Tri***ic diapsid shows early diversification of skin appendages in reptiles

  • Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jur***ic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Pterosaur integumentary structures with complex feather-like branching. Nat. Ecol. Evol. 3, 24–30 (2019).

    PubMed 

    Google Scholar
     

  • Lowe, C. B., Clarke, J. A., Baker, A. J., Haussler, D. & Edwards, S. V. Feather development genes and ***ociated regulatory innovation predate the origin of Dinosauria. Mol. Biol. Evol. 32, 23–28 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Buchwitz, M. & Voigt, S. The dorsal appendages of the Tri***ic reptile Longisquama insignis: reconsideration of a controversial integument type. Palaontol. Z. 86, 313–331 (2012).


    Google Scholar
     

  • Jones, T. D. et al. Nonavian feathers in a Late Tri***ic archosaur. Science 288, 2202–2205 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reisz, R. R. & Sues, H.-D. The ‘feathers’ of Longisquama. Nature 408, 428–428 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharov, A. G. [Unusual reptile from the Lower Triassic of Fergana]. Paleontol. Zh. 1, 127–131 (1970).


    Google Scholar
     

  • Renesto, S., Spielmann, J. A., Lucas, S. G. & Spagnoli, G. T. The taxonomy and paleobiology of the Late Tri***ic (Carnian-Norian: Adamanian-Apachean) drepanosaurs (Diapsida: Archosauromorpha: Drepanosauromorpha). Bull. New Mexico Mus. Nat. Hist. Sci. 46, 1–81 2010).


    Google Scholar
     

  • Dhouailly, D. et al. Getting to the root of scales, feather and hair: as deep as odontodes? Exp. Dermatol. 28, 503–508 (2019).

    PubMed 

    Google Scholar
     

  • Di-Poï, N. & Milinkovitch, M. C. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Sci. Adv. 2, e1600708 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musser, J. M., Wagner, G. P. & Prum, R. O. Nuclear β‐catenin localization supports homology of feathers, avian scutate scales, and alligator scales in early development. Evol. Dev. 17, 185–194 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Widelitz, R. B., Veltmaat, J. M., Mayer, J. A., Foley, J. & Chuong, C.-M. Mammary glands and feathers: comparing two skin appendages which help define novel cl***es during vertebrate evolution. Semin. Cell Dev. Biol. 18, 255–266 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Millar, S. E. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216–225 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Dalla Valle, L. et al. β‐keratins of the crocodilian epidermis: composition, structure, and phylogenetic relationships. J. Exp. Zool. B Mol. Dev. Evol. 312, 42–57 (2009).

    PubMed 

    Google Scholar
     

  • Gall, J.-C. Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur. Mémoires du Service de la Carte géologique d’Alsace et de Lorraine 34, 1–318 (1971).

  • Pritchard, A. C. & Nesbitt, S. J. A bird-like skull in a Tri***ic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida. R. Soc. Open Sci. 4, 170499 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renesto, S. & Dalla Vecchia, F. M. The skull and lower jaw of the holotype of Megalancosaurus preonensis (Diapsida, Drepanosauridae) from the Upper Tri***ic of Northern Italy. Riv. Ital. Paleontol. Stratigr. 111, 247–257 (2005).


    Google Scholar
     

  • Buffa, V., Frey, E., Steyer, J.-S. & Laurin, M. ‘Birds’ of two feathers: Avicranium renestoi and the paraphyly of bird-headed reptiles (Diapsida: ‘Avicephala’). Zool. J. Linn. Soc. 202, zlae050 (2024).


    Google Scholar
     

  • Renesto, S. & Binelli, G. Vallesaurus cenensis Wild, 1991, a drepanosaurid (Reptilia, Diapsida) from the Late Tri***ic of northern Italy. Riv. Ital. Paleontol. Stratigr. 112, 77–94 (2006).


    Google Scholar
     

  • Ezcurra, M. D. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiekman, S. N. F., Fraser, N. C. & Scheyer, T. M. A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other “protorosaurs”, and its implications for the early evolution of stem archosaurs. PeerJ 9, e11143 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, S. E. in Biology of the Reptilia Vol. 20 (eds Gans, C. et al.) Ch. 1 (Society for the Study of Amphibians and Reptiles, 2008).

  • Moon, B. C. & Kirton, A. M. Ichthyosaurs of the British Middle and Upper Jur***ic Part 1. Ophthalmosaurus. Monogr. Palaeontogr. Soc. 170, 1–84 (2016).


    Google Scholar
     

  • Rieppel, O. Sauropterygia I: Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea. Handbuch der Paläoherpetologie Vol. 12A (Verlag Dr. Friedrich Pfeil, 2000).

  • Colbert, E. H. & Olsen, P. E. A new and unusual aquatic reptile from the Lockatong Formation of New Jersey (Late Tri***ic, Newark Supergroup). Am. Mus. Novit. 2001, 1–24 (2001).


    Google Scholar
     

  • Pritchard, A. C., Turner, A. H., Irmis, R. B., Nesbitt, S. J. & Smith, N. D. Extreme modification of the tetrapod forelimb in a Tri***ic diapsid reptile. Curr. Biol. 26, 1–8 (2016).


    Google Scholar
     

  • Hopson, J. A. in New Perspectives on the Origin and Early Evolution of Birds: Proc. of the International Symposium in Honor of John H. Ostrom (eds Gauthier, J. & Gall, I. F.) Ch. 12 (Peabody Museum of Natural History, 2001).

  • Spiekman, S.N.F. et al. Supplementary Files to ‘Tri***ic diapsid shows early diversification of skin appendages in reptiles’. Figshare (2025).

  • Chang, C. et al. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int. J. Dev. Biol. 53, 813 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B., Yang, W., Sherman, V. R. & Meyers, M. A. Pangolin armor: overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 41, 60–74 (2016).

    PubMed 

    Google Scholar
     

  • Edwards, N. P. et al. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep. 6, 34002 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507, 350–353 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, V., McNamara, M. E., Webb, S. M., Ito, S. & Wakamatsu, K. Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. Proc. Natl Acad. Sci. USA 116, 17880–17889 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wogelius, R. A. et al. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333, 1622–1626 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, V., Webb, S. M. & McNamara, M. E. Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Sci. Rep. 10, 8970 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, A. et al. in Pennaraptoran Theropod Dinosaurs Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) Ch. 9 (American Museum of Natural History, 2020).

  • Pritchard, A. C., Sues, H.-D., Scott, D. & Reisz, R. R. Osteology, relationships and functional morphology of Weigeltisaurus jaekeli (Diapsida, Weigeltisauridae) based on a complete skeleton from the Upper Permian Kupferschiefer of Germany. PeerJ 9, e11413 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simões, T. R. et al. The origin of squamates revealed by a Middle Tri***ic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Ezcurra, M. D., Scheyer, T. M. & Butler, R. J. The origin and early evolution of Sauria: re***essing the Permian saurian fossil record and the timing of the crocodile-lizard divergence. PLoS ONE 9, e89165 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caro, T. Antipredator deception in terrestrial vertebrates. Curr. Zool. 60, 16–25 (2014).


    Google Scholar
     

  • Grauvogel-Stamm, L. La flore du Grés à Voltzia (Buntsandstein supérieur) des Vosges du Nord (France): morphologie, anatomie, interprétations phylogénique et paléogéographique. Sci. Géologiques, Bull. et. Mémoires 50, 1–225 (1978).


    Google Scholar
     

  • Lucas, A. M. & Stettenheim, P. R. Avian Anatomy. Integument, Part I and II (US Government Printing Office, 1972).

  • Prum, R. O. Development and evolutionary origin of feathers. J. Exp. Zool. B Mol. Dev. Evol. 285, 291–306 (1999).

    CAS 

    Google Scholar
     

  • Benton, M. J. The origin of endothermy in synapsids and archosaurs and arms races in the Tri***ic. Gondwana Res. 100, 261–289 (2021).

    ADS 

    Google Scholar
     

  • Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The early origin of feathers. Trends Ecol. Evol. 34, 856–869 (2019).

    PubMed 

    Google Scholar
     

  • Olsen, P. et al. Arctic ice and the ecological rise of the dinosaurs. Sci. Adv. 8, eabo6342 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babarović, F. et al. Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record. J. R. Soc. Interface 16, 20180921 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cincotta, A. et al. Pterosaur melanosomes support signalling functions for early feathers. Nature 604, 684–688 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, D. et al. A bony-crested Jur***ic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).

  • Spiekman, S. N. F. et al. Aquatic habits and niche partitioning in the extraordinarily long-necked Tri***ic reptile. Tanystropheus. Curr. Biol. 30, 3889–3895 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schoch, R. R. & Sues, H.-D. A Middle Tri***ic stem-turtle and the evolution of the turtle body plan. Nature 523, 584–587 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoch, R. R. & Sues, H.-D. Osteology of the Middle Tri***ic stem-turtle Pappochelys rosinae and the early evolution of the turtle skeleton. J. Syst. Paleontol. 16, 927–965 (2018).


    Google Scholar
     

  • Gaffney, E. S. The comparative osteology of the Tri***ic turtle Proganochelys. Bull. Am. Mus. Nat. Hist. 194, 1–263 (1990).


    Google Scholar
     

  • Pritchard, A. C., Gauthier, J. A., Hanson, M., Bever, G. S. & Bhullar, B.-A. S. A tiny Tri***ic saurian from Connecticut and the early evolution of the diapsid feeding apparatus. Nat. Commun. 9, 1213 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheyer, T. M. et al. Colobops, a juvenile rhynchocephalian reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. R. Soc. Open Sci. 7, 1–14 (2020).


    Google Scholar
     

  • Pritchard, A. C. & Sues, H.-D. Postcranial remains of Teraterpeton hrynewichorum (Reptilia: Archosauromorpha) and the mosaic evolution of the saurian postcranial skeleton. J. Syst. Paleontol. 17, 1745–1765 (2019).


    Google Scholar
     

  • Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).

    PubMed 

    Google Scholar
     

  • Goloboff, P. A. Extended implied weighting. Cladistics 30, 260–272 (2014).

    PubMed 

    Google Scholar
     

  • Ezcurra, M. D. Exploring the effects of weighting against homoplasy in genealogies of palaeontological phylogenetic matrices. Cladistics 40, 242–281 (2024).

    PubMed 

    Google Scholar
     

  • Goloboff, P. A., Torres, A. & Arias, J. S. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34, 407–437 (2018).

    PubMed 

    Google Scholar
     

  • Spiekman, S. N. F., Ezcurra, M. D., Butler, R. J., Fraser, N. C. & Maidment, S. C. R. Pendraig milnerae, a new small-sized coelophysoid theropod from the Late Tri***ic of Wales. R. Soc. Open Sci. 8, 210915 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogg, J. G., Chen, Z.-Q., Orchard, M. J. & Jiang, H. S. in Geologic Time Scale 2020 Vol. 2 (eds Gradstein, F. M. et al.) Ch. 25 (Elsevier, 2020).

  • Butler, R. J. et al. The sail-backed reptile Ctenosauriscus from the latest Early Tri***ic of Germany and the timing and biogeography of the early archosaur radiation. PLoS ONE 6, e25693 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aretz, M. et al. in Geologic Time Scale 2020 Vol. 2 (eds Gradstein, F. M. et al.) Ch. 23 (Elsevier, 2020).

  • Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electronica 18, 1–106 (2015).

    ADS 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spiekman, S. N. F. Earliest evidence of ‘feather-like’ integumentary structures in a Middle Tri***ic stem-diapsid. [Dataset]. European Synchrotron Radiation Facility (2025).

  • Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 18, 617–629 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirone, A., Brun, E., Gouillart, E., Tafforeau, P. & Kieffer, J. The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities. Nucl. Instrum. Methods Phys. Res. B 324, 41–48 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *