Close

Synthesis of deuterated acids and bases using bipolar membranes

  • Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bu, F. et al. Electrocatalytic reductive deuteration of arenes and heteroarenes. Nature 634, 592–599 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ly, K. T. et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photon. 11, 63–68 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hupin, G., Quaglioni, S. & Navratil, P. Ab initio predictions for polarized deuterium-tritium thermonuclear fusion. Nat. Commun. 10, 351 (2019).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Mossa, V. et al. The baryon density of the Universe from an improved rate of deuterium burning. Nature 587, 210–213 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. & Liu, X. in Deuteride Materials 81–135 (Springer, 2019).

  • Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shehzad, M. A. et al. Shielded goethite catalyst that enables fast water dissociation in bipolar membranes. Nat. Commun. 12, 9 (2021).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Oener, S. Z., Foster, M. J. & Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 369, 1099–1103 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chaudhury, S., Harlev, N., Haim, O., Lahav, O. & Nir, O. Decreasing seawater desalination footprint by integrating bipolar-membrane electrodialysis in a single-p*** reverse osmosis scheme. ACS Sustain. Chem. Eng. 9, 16232–16240 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bui, J. C. et al. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater. Energy Environ. Sci. 16, 5076–5095 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Petrov, K. V. et al. Bipolar membranes for intrinsically stable and scalable CO2 electrolysis. Nat. Energy 9, 932–938 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Eisaman, M. D., Alvarado, L., Larner, D., Wang, P. & Littau, K. A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy Environ. Sci. 4, 4031–4037 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Z., Hitt, J. L., Zeng, Z., Hickner, M. A. & Mallouk, T. E. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Toh, W. L., Dinh, H. Q., Chu, A. T., Sauvé, E. R. & Surendranath, Y. The role of ionic blockades in controlling the efficiency of energy recovery in forward bias bipolar membranes. Nat. Energy 8, 1405–1416 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rodellar, C. G., Gisbert-Gonzalez, J. M., Sarabia, F., Roldan Cuenya, B. & Oener, S. Z. Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces. Nat. Energy 9, 548–558 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sasmal, S. et al. Materials descriptors for advanced water dissociation catalysts in bipolar membranes. Nat. Mater. 23, 1421–1427 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yu, W. et al. Tailoring high-performance bipolar membrane for durable pure water electrolysis. Nat. Commun. 15, 10220 (2024).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fuoss, R. M. & Kraus, C. A. Properties of electrolytic solutions. III. The dissociation constant. J. Am. Chem. Soc. 55, 1019–1028 (1933).

    Article 
    CAS 

    Google Scholar
     

  • Simons, R. Strong electric field effects on proton transfer between membrane-bound amines and water. Nature 280, 824–826 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simons, R. Electric-field effects on proton-transfer between ionizable groups and water in ion-exchange membranes. Electrochim. Acta 29, 151–158 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Bui, J. C. et al. Multi-scale physics of bipolar membranes in electrochemical processes. Nat. Chem. Eng. 1, 45–60 (2024).

    Article 

    Google Scholar
     

  • Chen, L. H. K., Xu, Q. C., Oener, S. Z., Fabrizio, K. & Boettcher, S. W. Design principles for water dissociation catalysts in high-performance bipolar membranes. Nat. Commun. 13, 3846 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chen, L., Xu, Q. & Boettcher, S. W. Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis. Joule 7, 1867–1886 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, F., Pünt, I., van der Vegt, N., Wessling, M. & Strathmann, H. Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid–base electrodialysis. J. Membr. Sci. 182, 13–28 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Bui, J. C., Corpus, K. R. M., Bell, A. T. & Weber, A. Z. On the nature of field-enhanced water dissociation in bipolar membranes. J. Phys. Chem. C 125, 24974–24987 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cahoon, J. F., Sawyer, K. R., Schlegel, J. P. & Harris, C. B. Determining transition-state geometries in liquids using 2D-IR. Science 319, 1820–1823 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thamer, M., De Marco, L., Ramasesha, K., Mandal, A. & Tokmakoff, A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350, 78–82 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Blommaert, M. A., Vermaas, D. A., Izelaar, B., Veen, B. & Smith, W. A. Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes. J. Mater. Chem. A 7, 19060–19069 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J. et al. Shielding effect enables fast ion transfer through nanoporous membrane for highly energy-efficient electrodialysis. Nat. Water 1, 725–735 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bui, J. C., Digdaya, I., Xiang, C. X., Bell, A. T. & Weber, A. Z. Understanding multi-ion transport mechanisms in bipolar membranes. ACS Appl. Mater. Interfaces 12, 52509–52526 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dunning, T. H. Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • NOSÉ, S. I. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 100, 191–198 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *