Close

Reply to: On the effects of fault alignment on slip stability

  • Lee, J., Tsai, V. C., Hirth, G., Chatterjee, A. & Trugman, D. T. Fault-network geometry influences earthquake frictional behaviour. Nature 631, 106–110 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. Solid Earth 88, 10359–10370 (1983).

    Article 

    Google Scholar
     

  • Fialko, Y. & Kaneko, Y. On the effects of fault alignment on slip stability. Nature (2025).

  • Titus, S. J. et al. Geologic versus geodetic deformation adjacent to the San Andreas fault, central California. Geol. Soc. Am. Bull. 123, 794–820 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hardebeck, J. L. & Michael, A. J. Stress orientations at intermediate angles to the San Andreas Fault, California. J. Geophys. Res. Solid Earth 109, B11303 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Burgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kilgore, B. D., Blanpied, M. L. & Dieterich, J. H. Velocity dependent friction of granite over a wide range of conditions. Geophys. Res. Lett. 20, 903–906 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tanikawa, W. & Shimamoto, T. Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake. J. Geophys. Res. Solid Earth 114, B01402 (2009).

    ADS 

    Google Scholar
     

  • Sawai, M., Niemeijer, A. R., Hirose, T. & Spiers, C. J. Frictional properties of JFAST core samples and implications for slow earthquakes at the Tohoku subduction zone. Geophys. Res. Lett. 44, 8822–8831 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Z. & Li, H. in Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake (ed. Li, Y. G.) (Springer, 2019).

  • Ozawa, S. et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475, 373–376 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, Q., Feng, L., Hermawan, I. & Hill, E. M. Coseismic and postseismic slip of the 2005 Mw 8.6 Nias-Simeulue earthquake: spatial overlap and localized viscoelastic flow. J. Geophys. Res. Solid Earth 124, 7445–7460 (2019).

    Article 

    Google Scholar
     

  • Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C. & Kuo, L.-C. Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. J. Geophys. Res. Solid Earth 119, 5114–5139 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Cetin, E., Cakir, Z., Meghraoui, M., Ergintav, S. & Akoglu, A. M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst. 15, 2883–2894 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, V. C., Hirth, G., Trugman, D. T. & Chu, S. X. Impact versus frictional earthquake models for high-frequency radiation in complex fault zones. J. Geophys. Res. Solid Earth 126, e2021JB022313 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *