Close

Quantum correlations of spontaneous two-photon emission from a quantum dot

  • Chluba, J. & Sunyaev, R. Two-photon transitions in hydrogen and cosmological recombination. Astron. Astrophys 480, 629–645 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Brune, M., Raimond, J., Goy, P., Davidovich, L. & Haroche, S. Realization of a two-photon maser oscillator. Phys. Rev. Lett. 59, 1899 (1987).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • del Valle, E. et al. Two-photon lasing by a single quantum dot in a high-Q microcavity. Phys. Rev. B 81, 035302 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Heinze, D., Zrenner, A. & Schumacher, S. Polarization-entangled twin photons from two-photon quantum-dot emission. Phys. Rev. B 95, 245306 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Sloan, J., Rivera, N., Joannopoulos, J. D. & Soljačić, M. Controlling two-photon emission from superluminal and accelerating index perturbations. Nat. Phys. 18, 67–74 (2022).

    Article 

    Google Scholar
     

  • Rivera, N., Rosolen, G., Joannopoulos, J. D., Kaminer, I. & Soljačić, M. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. Proc. Natl Acad. Sci. USA 114, 13607–13612 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nikolaus, B., Zhang, D. & Toschek, P. Two-photon laser. Phys. Rev. Lett. 47, 171–173 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Hayat, A., Ginzburg, P. & Orenstein, M. Observation of two-photon emission from semiconductors. Nat. Photon. 2, 238–241 (2008).

    Article 

    Google Scholar
     

  • Michler, P. & Portalupi, S. L. Semiconductor Quantum Light Sources: Fundamentals, Technologies and Devices (Walter de Gruyter, 2024).

  • del Valle, E., Gonzalez-Tudela, A., Cancellieri, E., Laussy, F. P. & Tejedor, C. Generation of a two-photon state from a quantum dot in a microcavity. New J. Phys. 13, 113014 (2011).

    Article 

    Google Scholar
     

  • Muñoz, C. S. et al. Emitters of N-photon bundles. Nat. Photon. 8, 550–555 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Muñoz, C. S., Laussy, F. P., Tejedor, C. & Del Valle, E. Enhanced two-photon emission from a dressed biexciton. New J. Phys. 17, 123021 (2015).

    Article 

    Google Scholar
     

  • Sánchez Muñoz, C., Laussy, F. P., Valle, E. D., Tejedor, C. & González-Tudela, A. Filtering multiphoton emission from state-of the-art cavity quantum electrodynamics. Optica 5, 14–26 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chiarella, G., Frank, T., Farrera, P. & Rempe, G. Two-cavity-mediated photon-pair emission by one atom. Optica Quantum 2, 346–350 (2024).

    Article 

    Google Scholar
     

  • Schumacher, S. et al. Cavity-blockisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting. Opt. Express 20, 5335–5342 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Seidelmann, T. et al. From strong to weak temperature dependence of the two-photon entanglement resulting from the biexciton cascade inside a cavity. Phys. Rev. B 99, 245301 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ota, Y., Iwamoto, S., Kumagai, N. & Arakawa, Y. Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett. 107, 233602 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qian, C. et al. Two-photon rabi splitting in a coupled system of a nanocavity and exciton complexes. Phys. Rev. Lett. 120, 213901 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Dynamic resonance fluorescence in solid-state cavity quantum electrodynamics. Nat. Photon. 18, 318–324 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Cygorek, M., Keeling, J., Lovett, B. W. & Gauger, E. M. Sublinear scaling in non-markovian open quantum systems simulations. Phys. Rev. X 14, 011010 (2024).


    Google Scholar
     

  • Hargart, F. et al. Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states. Phys. Rev. B 93, 115308 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Moody, G., Chang, L., Steiner, T. J. & Bowers, J. E. Chip-scale nonlinear photonics for quantum light generation. AVS Quantum Sci. 2, 041702 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article 

    Google Scholar
     

  • Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kaniber, M. et al. Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303(R) (2008).

    Article 
    ADS 

    Google Scholar
     

  • Winger, M. et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ates, S. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nat. Photon. 3, 724–728 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Le Jeannic, H. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article 

    Google Scholar
     

  • Tomm, N. et al. Photon bound state dynamics from a single artificial atom. Nat. Phys. 19, 857–862 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heindel, T. et al. A bright triggered twin-photon source in the solid state. Nat. Commun. 8, 14870 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, K. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017).

    Article 

    Google Scholar
     

  • Trotta, R. et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 7, 10375 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat. Commun. 7, 10387 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Wavelength-tunable high-fidelity entangled photon sources enabled by dual stark effects. Nat. Commun. 15, 5792 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Z. & Vučković, J. Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities. Phys. Rev. B 81, 035301 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tomm, N. et al. Tuning the mode splitting of a semiconductor microcavity with uniaxial stress. Phys. Rev. Appl. 15, 054061 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Müller, M. et al. Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Heinze, D., Breddermann, D., Zrenner, A. & Schumacher, S. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission. Nat. Commun. 6, 8473 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jonas, B. et al. Nonlinear down-conversion in a single quantum dot. Nat. Commun. 13, 1387 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koshino, K. et al. Observation of the three-state dressed states in circuit quantum electrodynamics. Phys. Rev. Lett. 110, 263601 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gasparinetti, S. et al. Two-photon resonance fluorescence of a ladder-type atomic system. Phys. Rev. A 100, 033802 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ardelt, P.-L. et al. Optical control of nonlinearly dressed states in an individual quantum dot. Phys. Rev. B 93, 165305 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cygorek, M. & Gauger, E. M. ACE: a general-purpose non-markovian open quantum systems simulation toolkit based on process tensors. J. Chem. Phys. 181, 074111 (2024).

    Article 

    Google Scholar
     

  • Cygorek, M. et al. Simulation of open quantum systems by automated compression of arbitrary environments. Nat. Phys. 18, 662–668 (2022).

    Article 

    Google Scholar
     

  • Krummheuer, B., Axt, V. M., Kuhn, T., D’Amico, I. & Rossi, F. Pure dephasing and phonon dynamics in GaAs- and GaN-based quantum dot structures: interplay between material parameters and geometry. Phys. Rev. B 71, 235329 (2005).

    Article 
    ADS 

    Google Scholar
     

  • del Valle, E., Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C. & Hartmann, M. J. Theory of frequency-filtered and time-resolved N-photon correlations. Phys. Rev. Lett. 109, 183601 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cosacchi, M. et al. Accuracy of the quantum regression theorem for photon emission from a quantum dot. Phys. Rev. Lett. 127, 100402 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Daley, A. J. Quantum trajectories and open many-body quantum systems. Adv. Phys. 63, 77–149 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kiraz, A., Atatüre, M. & Imamoğlu, A. Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69, 032305 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Cygorek, M. et al. Signatures of cooperative emission in photon coincidence: superradiance versus measurement-induced cooperativity. Phys. Rev. A 107, 023718 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cygorek, M. et al. Comparison of different concurrences characterizing photon pairs generated in the biexciton cascade in quantum dots coupled to microcavities. Phys. Rev. B 98, 045303 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Liu, S. et al. Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies. Nat. Photon. 18, 967–974 (2024).

  • Liu, S. Quantum correlation of spontaneous two-photon emission from a quantum dot. figshare (2025).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *