Close

Optical nonlinearities in excess of 500 through sublattice reconstruction

  • Li, Z. & Yin, Y. Stimuli‐responsive optical nanomaterials. Adv. Mater. 31, 1807061 (2019).

    Article 

    Google Scholar
     

  • Blum, A. P. et al. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 137, 2140–2154 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blblocke, G. & Grabmaier, B. A General Introduction to Luminescent Materials (Springer, 1994).

  • Liang, Y. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol. 17, 524–530 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Wen, Z., Pu, R. & Zhan, Q. Giant optical nonlinear response up to 60th-order induced by the ytterbium energy relay mediated photon avalanches. Laser Photon. Rev. 18, 2400290 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Eaton, D. F. Nonlinear optical materials. Science 253, 281–287 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins, J. C. et al. Upconverting nanoparticles as primary thermometers and power sensors. Front. Photon. 3, 1037473 (2022).

    Article 

    Google Scholar
     

  • Su, Q. et al. Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement. Nat. Commun. 12, 4367 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photon. 12, 548–553 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Lanthanide-doped KMgF3 upconversion nanoparticles for photon avalanche luminescence with giant nonlinearities. Nano Lett. 23, 8576–8584 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Szalkowski, M. et al. Advances in the photon avalanche luminescence of inorganic lanthanide-doped nanomaterials. Chem. Soc. Rev. 54, 983–1026 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Versatile cascade migrating photon avalanches for full-spectrum extremely nonlinear emissions and super-resolution microscopy. Adv. Photon. 6, 056010 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Z. et al. Three-dimensional, dual-color nanoscopy enabled by migrating photon avalanches with one single low-power CW beam. Sci. Bull. 69, 458–465 (2024).

    Article 

    Google Scholar
     

  • Denkova, D. et al. 3D sub-diffraction imaging in a conventional confocal configuration by exploiting super-linear emitters. Nat. Commun. 10, 3695 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Sub-60-nm isotropic 3D super-resolution microscopy through self-interference field excitation. Optica 11, 1324–1333 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Tandem photon avalanches for various nanoscale emitters with optical nonlinearity up to 41st‐order through interfacial energy transfer. Adv. Mater. 36, 2307848 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dudek, M. et al. Size‐dependent photon avalanching in Tm3+ doped LiYF4 nano, micro, and bulk crystals. Adv. Opt. Mater. 10, 2201052 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dudek, M. et al. Understanding Yb3+-sensitized photon avalanche in Pr3+ co-doped nanocrystals: modelling and optimization. Nanoscale 15, 18613–18623 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You, W., Tu, D., Zheng, W., Huang, P. & Chen, X. Lanthanide-doped disordered crystals: site symmetry and optical properties. J. Lumin. 201, 255–264 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wisser, M. D. et al. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. Nano Lett. 15, 1891–1897 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, H., Sun, L.-D. & Yan, C.-H. Local structure engineering in lanthanide-doped nanocrystals for tunable upconversion emissions. J. Am. Chem. Soc. 143, 20546–20561 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wisser, M. D. et al. Enhancing quantum yield via local symmetry distortion in lanthanide-based upconverting nanoparticles. ACS Photon. 3, 1523–1530 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Goldner, P. & Pelle, F. Photon avalanche fluorescence and lasers. Opt. Mater. 5, 239–249 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bednarkiewicz, A., Chan, E. M., Kotulska, A., Marciniak, L. & Prorok, K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4, 881–889 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Villanueva-Delgado, P., Krämer, K. W., Valiente, R., de Jong, M. & Meijerink, A. Modeling blue to UV upconversion in β-NaYF4:Tm3+. Phys. Chem. Chem. Phys. 18, 27396–27404 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majak, M., Misiak, M. & Bednarkiewicz, A. The mechanisms behind the extreme susceptibility of photon avalanche emission to quenching. Mater. Horiz. 11, 4791–4801 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naccache, R., Yu, Q. & Capobianco, J. A. The fluoride host: nucleation, growth, and upconversion of lanthanide‐doped nanoparticles. Adv. Opt. Mater. 3, 482–509 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F., Wang, J. & Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Würth, C., Fischer, S., Grauel, B., Alivisatos, A. P. & Resch-Genger, U. Quantum yields, surface quenching, and pblockivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 140, 4922–4928 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lage, M. M., Moreira, R. L., Matinaga, F. M. & Gesland, J.-Y. Raman and infrared reflectivity determination of phonon modes and crystal structure of Czochralski-grown NaLnF4 (Ln = La, Ce, Pr, Sm, Eu, and Gd) single crystals. Chem. Mater. 17, 4523–4529 (2005).

    Article 
    CAS 

    Google Scholar
     

  • He, E. et al. Investigation of upconversion and downconversion fluorescence emissions from β-NaLn1F4:Yb3+, Ln23+ (Ln1 = Y, Lu; Ln2 = Er, Ho, Tm, Eu) hexagonal disk system. Mater. Res. Bull. 48, 3505–3512 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tu, D. et al. Breakdown of crystallographic site symmetry in lanthanide‐doped NaYF4 crystals. Angew. Chem. Int. Ed. 4, 1128–1133 (2013).

    Article 

    Google Scholar
     

  • Dong, H. et al. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J. Am. Chem. Soc. 137, 6569–6576 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arteaga Cardona, F. et al. Dramatic impact of materials combinations on the chemical organization of core–shell nanocrystals: boosting the Tm3+ emission above 1600 nm. ACS Nano 18, 26233–26250 (2024).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, L. et al. Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles. Nat. Nanotechnol. 16, 975–980 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photon. 12, 154–158 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nat. Photon. 15, 732–737 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lamon, S., Yu, H., Zhang, Q. & Gu, M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. Light Sci. Appl. 13, 252 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willig, K. I., Keller, J., Bossi, M. & Hell, S. W. STED microscopy resolves nanoparticle blockemblies. New J. Phys. 8, 106 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Chivian, J. S., Case, W. & Eden, D. The photon avalanche: a new phenomenon in Pr3+‐based infrared quantum counters. Appl. Phys. Lett. 35, 124–125 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marciniak, L., Bednarkiewicz, A. & Elzbieciak, K. NIR–NIR photon avalanche based luminescent thermometry with Nd3+ doped nanoparticles. J. Mater. Chem. C 6, 7568–7575 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fardian-Melamed, N. et al. Infrared nanosensors of piconewton to micronewton forces. Nature 637, 70–75 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casar, J. R. et al. Upconverting microgauges reveal intraluminal force dynamics in vivo. Nature 637, 76–83 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skripka, A. et al. Intrinsic optical bistability of photon avalanching nanocrystals. Nat. Photon. 19, 212–218 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Pan, B. et al. Sidelobe-free deterministic 3D nanoscopy with λ/33 axial resolution. Light Sci. Appl. 14, 168 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *