Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).
Sahai, E. et al. A framework for advancing our understanding of cancer-blockociated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
Chhabra, Y. & Weeraratna, A. T. Fibroblasts in cancer: unity in heterogeneity. Cell 186, 1580–1609 (2023).
Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865 (2021).
Kandalaft, L. E., Dangaj Laniti, D. & Coukos, G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat. Rev. Cancer 22, 640–656 (2022).
Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-blockociated fibroblasts. Nature 569, 723–728 (2019).
Ulanovskaya, O. A., Zuhl, A. M. & Cravatt, B. F. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat. Chem. Biol. 9, 300–306 (2013).
Zhang, L. et al. Acblockulation of nicotinamide N-methyltransferase (NNMT) in cancer-blockociated fibroblasts: a potential prognostic and predictive biomarker for gastric carcinoma. J. Histochem. Cytochem. 69, 165–176 (2021).
Song, M. et al. High stromal nicotinamide N-methyltransferase (NNMT) indicates poor prognosis in colorectal cancer. Cancer Med. 9, 2030–2038 (2020).
Sartini, D. et al. Nicotinamide N-methyltransferase in non-small cell lung cancer: promising results for targeted anti-cancer therapy. Cell Biochem. Biophys. 67, 865–873 (2013).
Zhao, H., Li, R., Chen, Y., Yang, X. & Shang, Z. Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: evidence from patient-derived blockembled organoids. Oncogene 42, 1166–1180 (2023).
Ogawa, M. et al. Tumor stromal nicotinamide N-methyltransferase overexpression as a prognostic biomarker for poor clinical outcome in early-stage colorectal cancer. Sci. Rep. 12, 2767 (2022).
Yang, J. et al. Overexpression of nicotinamide n-methyltransferase mainly covers stroma of colorectal cancer and correlates with unfavorable survival by its product 1-MNA. J. Cancer 12, 6170–6181 (2021).
Russell, D. L., Brown, H. M. & Dunning, K. R. ADAMTS proteases in fertility. Matrix Biol. 44–46, 54–63 (2015).
Geisler, S. B. et al. Obscurin-like 1, OBSL1, is a novel cytoskeletal protein related to obscurin. Genomics 89, 521–531 (2007).
Diehl, V. et al. The role of decorin and biglycan signaling in tumorigenesis. Front. Oncol. 11, 801801 (2021).
De Martino, D. & Bravo-Cordero, J. J. Collagens in cancer: structural regulators and guardians of cancer progression. Cancer Res. 83, 1386–1392 (2023).
Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).
Danaher, P. et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat. Commun. 13, 385 (2022).
Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 39, 1623–1642 (2021).
Luo, H. et al. Pan-cancer single-cell ***ysis reveals the heterogeneity and plasticity of cancer-blockociated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022).
Ma, C. et al. Pan-cancer spatially resolved single-cell ***ysis reveals the crosstalk between cancer-blockociated fibroblasts and tumor microenvironment. Mol. Cancer 22, 170 (2023).
Maniati, E. et al. Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep. 30, 525–540 (2020).
Roby, K. F. et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21, 585–591 (2000).
Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).
Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).
Guo, R.-F. & Ward, P. A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852 (2005).
Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).
Kumar, V., Lee, J. D., Clark, R. J. & Woodruff, T. M. Development and validation of a LC-MS/MS blockay for pharmacokinetic studies of complement C5a receptor antagonists PMX53 and PMX205 in mice. Sci. Rep. 8, 8101 (2018).
Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353 (2018).
An, L.-L. et al. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci. Rep. 6, 33346 (2016).
Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49–62 (2014).
Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944 (2021).
Maeda, M. et al. Cancer cell niche factors secreted from cancer-blockociated fibroblast by loss of H3K27me3. Gut 69, 243–251 (2020).
Tyan, S.-W. et al. Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change. PLoS ONE 7, e35128 (2012).
van Haren, M. J. et al. Esterase-sensitive prodrugs of a potent bisubstrate inhibitor of nicotinamide N-methyltransferase (NNMT) display cellular activity. Biomolecules 11, 1357 (2021).
Policarpo, R. L. et al. High-affinity alkynyl bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). J. Med. Chem. 62, 9837–9873 (2019).
Chen, D. et al. Novel propargyl-linked bisubstrate ***ogues as tight-binding inhibitors for nicotinamide N-methyltransferase. J. Med. Chem. 62, 10783–10797 (2019).
Babault, N. et al. Discovery of bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). J. Med. Chem. 61, 1541–1551 (2018).
Hanson, Q. M. et al. Target clblock profiling of small-molecule methyltransferases. ACS Chem. Biol. 18, 969–981 (2023).
Barrows, R. D. et al. Potent uncompetitive inhibitors of nicotinamide N-methyltransferase (NNMT) as in vivo chemical probes. J. Med. Chem. 65, 14642–14654 (2022).
Tseng, D. et al. Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).
Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-blockociated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022). 2022 37.
Kerdidani, D. et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219, e20210815 (2022).
Kanzaki, R. & Pietras, K. Heterogeneity of cancer-blockociated fibroblasts: opportunities for precision medicine. Cancer Sci. 111, 2708–2717 (2020).
Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-blockociated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).
Kennel, K. B., Bozlar, M., De Valk, A. F. & Greten, F. R. Cancer-blockociated fibroblasts in inflammation and antitumor immunity. Clin. Cancer Res. 29, 1009–1016 (2023).
Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-blockociated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).
Weigert, M. et al. A cell atlas of the human fallopian tube throughout the menstrual cycle and menopause. Nat. Commun. 16, 372 (2025).
Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell ***ysis. Nat. Biotechnol. 42, 293–304 (2024).
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
Iyer, S. et al. Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 11, 384–407 (2021).
Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).
Schwörer, S. et al. Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell–derived cytokines. Cancer Res. 83, 1596–1610 (2023).
Shen, F. W. et al. Cloning of Ly-5 cDNA. Proc. Natl Acad. Sci. USA 82, 7360–7363 (1985).
Cordero, A. B., Kwon, Y., Hua, X. & Godwin, A. K. In vivo imaging and therapeutic treatments in an orthotopic mouse model of ovarian cancer. J. Vis. Exp. 42, e2125 (2010).
Zhang, G.-L., Zhang, Y., Cao, K.-X. & Wang, X.-M. Orthotopic injection of breast cancer cells into the mice mammary fat pad. J. Vis. Exp. 143, e58604 (2019).
Downs, E. C., Robertson, N. E., Riss, T. L. & Plunkett, M. L. Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro. J. Cell. Physiol. 152, 422–429 (1992).
Nielsen, T. B., Yan, J., Luna, B. & Spellberg, B. Murine oropharyngeal aspiration model of ventilator-blockociated and hospital-acquired bacterial pneumonia. J. Vis. Exp. 136, e57672 (2018).
Wang, L. et al. Mild hypothermia alleviates complement C5a-induced neuronal autophagy during brain ischemia–reperfusion injury after cardiac arrest. Cell. Mol. Neurobiol. 43, 1957–1974 (2023).
Francke, A., Herold, J., Weinert, S., Strblocker, R. H. & Braun-Dullaeus, R. C. Generation of mature murine monocytes from heterogeneous bone marrow and description of their properties. J. Histochem. Cytochem. 59, 813 (2011).
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
Müller-Reif, J. B. et al. A new parallel high-pressure packing system enables rapid multiplexed production of capillary columns. Mol. Cell. Proteom. 20, 100082 (2021).
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
Ariotta, V. et al. H&E image ***ysis pipeline for quantifying morphological features. J. Pathol. Inform. 14, 100339 (2023).
Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).
Kowal, M., Żejmo, M., Skobel, M., Korbicz, J. & Monczak, R. Cell nuclei segmentation in cytological images using convolutional neural network and seeded watershed algorithm. J. Digit. Imaging 33, 231–242 (2020).
Hasan, M. R., Hblockan, N., Khan, R., Kim, Y.-T. & Iqbal, S. M. Clblockification of cancer cells using computational ***ysis of dynamic morphology. Comput. Methods Programs Biomed. 156, 105–112 (2018).
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).
Gao, P. et al. A graph convolutional network-based screening strategy for rapid identification of SARS-CoV-2 cell-entry inhibitors. J. Chem. Inf. Model. 62, 1988–1997 (2022).
Jafari, R. et al. The cellular thermal shift blockay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004).
Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mblock spectrometry proteomics. Mblock Spectrom. Rev. 39, 229–244 (2020).
Metz, K. S. et al. Coral: clear and customizable visualization of human kinome data. Cell Syst. 7, 347–350 (2018).
Heide, J. et al. Data for ‘NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity’. Zenodo (2025).
Heide, J. et al. Code for ‘NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity’. Zenodo (2025).
Heide, J. et al. Code for ‘NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity’. Zenodo (2025).