NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity

  • Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Sahai, E. et al. A framework for advancing our understanding of cancer-blockociated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chhabra, Y. & Weeraratna, A. T. Fibroblasts in cancer: unity in heterogeneity. Cell 186, 1580–1609 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kandalaft, L. E., Dangaj Laniti, D. & Coukos, G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat. Rev. Cancer 22, 640–656 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-blockociated fibroblasts. Nature 569, 723–728 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulanovskaya, O. A., Zuhl, A. M. & Cravatt, B. F. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. Nat. Chem. Biol. 9, 300–306 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Acblockulation of nicotinamide N-methyltransferase (NNMT) in cancer-blockociated fibroblasts: a potential prognostic and predictive biomarker for gastric carcinoma. J. Histochem. Cytochem. 69, 165–176 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, M. et al. High stromal nicotinamide N-methyltransferase (NNMT) indicates poor prognosis in colorectal cancer. Cancer Med. 9, 2030–2038 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartini, D. et al. Nicotinamide N-methyltransferase in non-small cell lung cancer: promising results for targeted anti-cancer therapy. Cell Biochem. Biophys. 67, 865–873 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, H., Li, R., Chen, Y., Yang, X. & Shang, Z. Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: evidence from patient-derived blockembled organoids. Oncogene 42, 1166–1180 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa, M. et al. Tumor stromal nicotinamide N-methyltransferase overexpression as a prognostic biomarker for poor clinical outcome in early-stage colorectal cancer. Sci. Rep. 12, 2767 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Overexpression of nicotinamide n-methyltransferase mainly covers stroma of colorectal cancer and correlates with unfavorable survival by its product 1-MNA. J. Cancer 12, 6170–6181 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, D. L., Brown, H. M. & Dunning, K. R. ADAMTS proteases in fertility. Matrix Biol. 44–46, 54–63 (2015).

    PubMed 

    Google Scholar
     

  • Geisler, S. B. et al. Obscurin-like 1, OBSL1, is a novel cytoskeletal protein related to obscurin. Genomics 89, 521–531 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Diehl, V. et al. The role of decorin and biglycan signaling in tumorigenesis. Front. Oncol. 11, 801801 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Martino, D. & Bravo-Cordero, J. J. Collagens in cancer: structural regulators and guardians of cancer progression. Cancer Res. 83, 1386–1392 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Danaher, P. et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat. Commun. 13, 385 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 39, 1623–1642 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, H. et al. Pan-cancer single-cell ***ysis reveals the heterogeneity and plasticity of cancer-blockociated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C. et al. Pan-cancer spatially resolved single-cell ***ysis reveals the crosstalk between cancer-blockociated fibroblasts and tumor microenvironment. Mol. Cancer 22, 170 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maniati, E. et al. Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Rep. 30, 525–540 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roby, K. F. et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21, 585–591 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, R.-F. & Ward, P. A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, V., Lee, J. D., Clark, R. J. & Woodruff, T. M. Development and validation of a LC-MS/MS blockay for pharmacokinetic studies of complement C5a receptor antagonists PMX53 and PMX205 in mice. Sci. Rep. 8, 8101 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • An, L.-L. et al. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci. Rep. 6, 33346 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49–62 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 39, 928–944 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Maeda, M. et al. Cancer cell niche factors secreted from cancer-blockociated fibroblast by loss of H3K27me3. Gut 69, 243–251 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tyan, S.-W. et al. Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change. PLoS ONE 7, e35128 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Haren, M. J. et al. Esterase-sensitive prodrugs of a potent bisubstrate inhibitor of nicotinamide N-methyltransferase (NNMT) display cellular activity. Biomolecules 11, 1357 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Policarpo, R. L. et al. High-affinity alkynyl bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). J. Med. Chem. 62, 9837–9873 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. et al. Novel propargyl-linked bisubstrate ***ogues as tight-binding inhibitors for nicotinamide N-methyltransferase. J. Med. Chem. 62, 10783–10797 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babault, N. et al. Discovery of bisubstrate inhibitors of nicotinamide N-methyltransferase (NNMT). J. Med. Chem. 61, 1541–1551 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanson, Q. M. et al. Target clblock profiling of small-molecule methyltransferases. ACS Chem. Biol. 18, 969–981 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrows, R. D. et al. Potent uncompetitive inhibitors of nicotinamide N-methyltransferase (NNMT) as in vivo chemical probes. J. Med. Chem. 65, 14642–14654 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tseng, D. et al. Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-blockociated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022). 2022 37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerdidani, D. et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J. Exp. Med. 219, e20210815 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanzaki, R. & Pietras, K. Heterogeneity of cancer-blockociated fibroblasts: opportunities for precision medicine. Cancer Sci. 111, 2708–2717 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-blockociated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennel, K. B., Bozlar, M., De Valk, A. F. & Greten, F. R. Cancer-blockociated fibroblasts in inflammation and antitumor immunity. Clin. Cancer Res. 29, 1009–1016 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-blockociated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weigert, M. et al. A cell atlas of the human fallopian tube throughout the menstrual cycle and menopause. Nat. Commun. 16, 372 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell ***ysis. Nat. Biotechnol. 42, 293–304 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iyer, S. et al. Genetically defined syngeneic mouse models of ovarian cancer as tools for the discovery of combination immunotherapy. Cancer Discov. 11, 384–407 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwörer, S. et al. Hypoxia potentiates the inflammatory fibroblast phenotype promoted by pancreatic cancer cell–derived cytokines. Cancer Res. 83, 1596–1610 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, F. W. et al. Cloning of Ly-5 cDNA. Proc. Natl Acad. Sci. USA 82, 7360–7363 (1985).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordero, A. B., Kwon, Y., Hua, X. & Godwin, A. K. In vivo imaging and therapeutic treatments in an orthotopic mouse model of ovarian cancer. J. Vis. Exp. 42, e2125 (2010).


    Google Scholar
     

  • Zhang, G.-L., Zhang, Y., Cao, K.-X. & Wang, X.-M. Orthotopic injection of breast cancer cells into the mice mammary fat pad. J. Vis. Exp. 143, e58604 (2019).


    Google Scholar
     

  • Downs, E. C., Robertson, N. E., Riss, T. L. & Plunkett, M. L. Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro. J. Cell. Physiol. 152, 422–429 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, T. B., Yan, J., Luna, B. & Spellberg, B. Murine oropharyngeal aspiration model of ventilator-blockociated and hospital-acquired bacterial pneumonia. J. Vis. Exp. 136, e57672 (2018).


    Google Scholar
     

  • Wang, L. et al. Mild hypothermia alleviates complement C5a-induced neuronal autophagy during brain ischemia–reperfusion injury after cardiac arrest. Cell. Mol. Neurobiol. 43, 1957–1974 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Francke, A., Herold, J., Weinert, S., Strblocker, R. H. & Braun-Dullaeus, R. C. Generation of mature murine monocytes from heterogeneous bone marrow and description of their properties. J. Histochem. Cytochem. 59, 813 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Müller-Reif, J. B. et al. A new parallel high-pressure packing system enables rapid multiplexed production of capillary columns. Mol. Cell. Proteom. 20, 100082 (2021).


    Google Scholar
     

  • Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ariotta, V. et al. H&E image ***ysis pipeline for quantifying morphological features. J. Pathol. Inform. 14, 100339 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kowal, M., Żejmo, M., Skobel, M., Korbicz, J. & Monczak, R. Cell nuclei segmentation in cytological images using convolutional neural network and seeded watershed algorithm. J. Digit. Imaging 33, 231–242 (2020).

    PubMed 

    Google Scholar
     

  • Hasan, M. R., Hblockan, N., Khan, R., Kim, Y.-T. & Iqbal, S. M. Clblockification of cancer cells using computational ***ysis of dynamic morphology. Comput. Methods Programs Biomed. 156, 105–112 (2018).

    PubMed 

    Google Scholar
     

  • Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634–1641 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, P. et al. A graph convolutional network-based screening strategy for rapid identification of SARS-CoV-2 cell-entry inhibitors. J. Chem. Inf. Model. 62, 1988–1997 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jafari, R. et al. The cellular thermal shift blockay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Pino, L. K. et al. The Skyline ecosystem: informatics for quantitative mblock spectrometry proteomics. Mblock Spectrom. Rev. 39, 229–244 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Metz, K. S. et al. Coral: clear and customizable visualization of human kinome data. Cell Syst. 7, 347–350 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heide, J. et al. Data for ‘NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity’. Zenodo (2025).

  • Heide, J. et al. Code for ‘NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity’. Zenodo (2025).

  • Heide, J. et al. Code for ‘NNMT inhibition in cancer-blockociated fibroblasts restores antitumour immunity’. Zenodo (2025).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *