In a stretch of California’s Mojave Desert, NASA conducted a full-scale “dress rehearsal” to prepare how it will measure the noise generated by the X-59 quiet supersonic research aircraft.
The team behind the successful test flight series operates under NASA’s Commercial Supersonic Technology project. Beginning June 3 and concluding this week, researchers conducted a dry run for Phase 2 of NASA’s Quesst mission, when it will capture audio of the sonic thumps the X-59 will produce, rather than loud sonic booms ***ociated with supersonic flight.
“The dress rehearsal was critical for us,” said Larry Cliatt, sub-project manager for the Quesst acoustic validation phase, who is based at NASA’s Armstrong Flight Research Center in Edwards, California. “It gave us the opportunity to run through every aspect of our operation, from flight planning to data collection. In between those activities, we practiced aircraft operations, setting up the Ground Recording Systems, meteorological data collecting, and refining control room procedures. We were able to fine-tune our timelines, improve communication across teams, and ensure that when we perform these test with the X-59 aircraft, everything will run smoothly.”
During the tests, at NASA Armstrong, an F-15B aircraft served as a stand-in for the X-59, flying faster than the speed of sound and making multiple p***es over the Mojave sands. While it flew, researchers captured acoustic data using a linear array of ground recording systems spaced across miles of open desert, recorded weather readings, and measured the shock waves it generated.
For a supersonic aircraft like the F-15B, shock waves typically result in loud sonic booms, but the X-59 is designed to diffuse them in a way that will dramatically limit noise.
NASA’s Quesst mission aims to enable quiet supersonic flight over land using data from the X-59. The experimental aircraft will begin making its first flights this year – the first phase of Quesst.
But even before it takes to the air, the mission began its preparations for Phase 2 with the dry run, which focused on practicing under realistic test conditions and identifying issues before the official campaign begins, not collecting data from the F-15B.
Through Quesst’s development of the X-59, NASA will deliver design tools and technology for quiet supersonic airliners that will achieve the high speeds desired by commercial operators without disturbing people on the ground. NASA will also validate design tools through ground and flight testing, providing aircraft manufacturers the ability to explore new quiet supersonic concepts and have confidence that their resulting designs will meet requirements for quiet flight.
Most importantly, Quesst will gather data to understand community response to sounds generated during flight – key knowledge for a quiet supersonic future.