Integrated biotechnological and AI innovations for crop improvement

  • van Dijk, M. et al. A meta-***ysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    PubMed 

    Google Scholar
     

  • Hasegawa, T. et al. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2, 587–595 (2021).

    PubMed 

    Google Scholar
     

  • Zhang, H. et al. A Gγ protein regulates alkaline sensitivity in crops. Science 379, eade8416 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    PubMed 

    Google Scholar
     

  • Crow, J. F. 90 years ago: the beginning of hybrid maize. Genetics 148, 923–928 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad. Sci. USA 109, 12302–12308 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green, J. M. The benefits of herbicide-resistant crops. Pest. Manag. Sci. 68, 1323–1331 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Mascher, M. et al. Promises and challenges of crop translational genomics. Nature 636, 585–593 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. et al. Single-cell and spatial multi-omics in the plant sciences: technical advances, applications, and perspectives. Plant Commun. 4, 100508 (2023).

    PubMed 

    Google Scholar
     

  • Yu, H. et al. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156–1170 (2021). This study demonstrates the rapid neo-domestication of wild rice relatives, a new paradigm in enriching crop genetic resources and accelerating crop improvement.

    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    CAS 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kortemme, T. De novo protein design—from new structures to programmable functions. Cell 187, 526–544 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Listov, D. et al. Opportunities and challenges in design and optimization of protein function. Nat. Rev. Mol. Cell Biol. 25, 639–653 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187–214 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Shen, S. et al. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol. Plant 16, 43–63 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, B. et al. Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet. 25, 603–622 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Scossa, F. et al. Integrating multi-omics data for crop improvement. J. Plant Physiol. 257, 153352 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Torres-Rodríguez, J. V. et al. Evolving best practices for transcriptome-wide blockociation studies accelerate discovery of gene-phenotype links. Curr. Opin. Plant Biol. 83, 102670 (2025).

    PubMed 

    Google Scholar
     

  • Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Durbin, R. Genome blockembly in the telomere-to-telomere era. Nat. Rev. Genet. 25, 658–670 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. A complete telomere-to-telomere blockembly of the maize genome. Nat. Genet. 55, 1221–1231 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, P. et al. Pan-genome ***ysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542–3558 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Tang, D. et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 606, 535–541 (2022). Sequencing and ***ysis of genomes from wild and cultivated potatoes enables identification of candidate genes for many traits, including a transcription factor for tuber formation.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Pan-genome of wild and cultivated soybeans. Cell 182, 162–176 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hufford, M. B. et al. De novo blockembly, annotation, and comparative ***ysis of 26 diverse maize genomes. Science 373, 655–662 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayakodi, M. et al. Structural variation in the pangenome of wild and domesticated barley. Nature 636, 654–662 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, C. et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature 637, 384–393 (2024).

    PubMed 

    Google Scholar
     

  • Sun, W. et al. Genetic modification of Gγ subunit AT1 enhances salt-alkali tolerance in main graminaceous crops. Natl Sci. Rev. 10, nwad075 (2023). This study demonstrates that elite alleles cloned from one crop can be rapidly translated into other crops, facilitated by crop genomics, mutant collections and genome editing.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varshney, R. K. et al. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622–627 (2021). This study demonstrates some valuable breeding strategies from sequencing and ***ysis of cultivated and wild chickpea accessions.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, X. et al. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 385, eadm8762 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, S. et al. Harnessing landrace diversity empowers wheat breeding. Nature 632, 823–831 (2024). This study provides a framework for fully utilizing genetic diversity in more than 1,000 wheat landraces and cultivars for wheat improvement through sequencing and in-depth field phenotyping.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Releasing a sugar brake generates sweeter tomato without yield penalty. Nature 635, 647–656 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Structural variation reshapes population gene expression and trait variation in 2,105 Brblockica napus accessions. Nat. Genet. 56, 2538–2550 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, N. et al. Two teosintes made modern maize. Science 382, eadg8940 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Z. et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat. Genet. 55, 1745–1756 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186, 2313–2328 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Alemu, A. et al. Genomic selection in plant breeding: key factors shaping two decades of progress. Mol. Plant 17, 552–578 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, U. G. & Linksvayer, T. A. Microbiome breeding: conceptual and practical issues. Trends Microbiol. 30, 997–1011 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, L. et al. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. ISME J. 16, 1907–1920 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, H. et al. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. Microbiome 12, 44 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).

    CAS 

    Google Scholar
     

  • Zhang, L. et al. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nat. Commun. 13, 3361 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, R. et al. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytol. 225, 1762–1776 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. NRT1.1B is blockociated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Su, P. et al. Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat. Commun. 15, 23 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisberg, A. J. et al. Genomic approaches to plant-pathogen epidemiology and diagnostics. Annu. Rev. Phytopathol. 59, 311–332 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Thilliez, G. J. A. et al. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytol. 221, 1634–1648 (2019).

    PubMed 

    Google Scholar
     

  • Brooks, E. G. et al. Plant promoters and terminators for high-precision bioengineering. Biodes. Res. 5, 0013 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabriel, L. et al. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. et al. Rice metabolic regulatory network spanning the entire life cycle. Mol. Plant 15, 258–275 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018). This study uses metabolomics to demonstrate how breeding has made tomato more edible.

    CAS 
    PubMed 

    Google Scholar
     

  • Sreenivasulu, N. et al. Metabolic signatures from genebank collections: an underexploited resource for human health? Annu. Rev. Food Sci. Technol. 14, 183–202 (2023).

    PubMed 

    Google Scholar
     

  • Bai, Y. et al. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests. Science 375, eabm2948 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sha, G. et al. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 618, 1017–1023 (2023). Saturated targeted mutagenesis enabled by multiplexed genome editing optimizes the RBL1 allele in balancing immunity and growth, making the unusable allele valuable in rice breeding.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaelis, A. C. et al. The social and structural architecture of the yeast protein interactome. Nature 624, 192–200 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilbao, A. et al. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mblock spectrometry measurements. Nat. Commun. 14, 2461 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alseekh, S. & Fernie, A. R. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J. 94, 933–942 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Marand, A. P. et al. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Swift, J. et al. Exaptation of ancestral cell-identity networks enables C4 photosynthesis. Nature 636, 143–150 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortiz-Ramírez, C. et al. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374, 1247–1252 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omary, M. et al. A conserved superlocus regulates above- and belowground root initiation. Science 375, eabf4368 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. Q. et al. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat. Commun. 12, 2053 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves. Plant Biotechnol. J. 20, 2089–2106 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Molecular regulation of oil gland development and biosynthesis of essential oils in Citrus spp. Science 383, 659–666 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. Single-cell RNA sequencing of developing maize ears facilitates functional ***ysis and trait candidate gene discovery. Dev. Cell 56, 557–568 (2021). This study integrates single-cell omics with GWASs in crops to identify genes blockociated with yield.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nobori, T. et al. A rare PRIMER cell state in plant immunity. Nature 638, 197–205 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano, K. et al. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. Nat. Plants 10, 673–688 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago. Nat. Plants 9, 1734–1748 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Rhaman, M. S. et al. Opportunities and challenges in advancing plant research with single-cell omics. Genomics Proteomics Bioinformatics 22, qzae026 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, Y. et al. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). Plant Biotechnol. J. 20, 2372–2388 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. A spatial transcriptome map of the developing maize ear. Nat. Plants 10, 815–827 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Chau, T. N. et al. Advancing plant single-cell genomics with foundation models. Curr. Opin. Plant Biol. 82, 102666 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 188, 550–567 (2024).

    PubMed 

    Google Scholar
     

  • Tosches, M. A. & Lee, H. J. Cellular atlases of the entire mouse brain. Nature 624, 253–255 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Tuncel, A., Pan, C., Clem, J. S., Liu, D. & Qi, Y. CRISPR–Cas applications in agriculture and plant research. Nat. Rev. Mol. Cell Biol. 26, 419–441 (2025).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. J. et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397–1413 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, M. et al. Generation of a multiplex mutagenesis population via pooled CRISPR–Cas9 in soya bean. Plant Biotechnol. J. 18, 721–731 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Meng, X. et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10, 1238–1241 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Bi, M. et al. Construction of transcription factor mutagenesis population in tomato using a pooled CRISPR/Cas9 plasmid library. Plant Physiol. Biochem. 205, 108094 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • He, J. et al. Genome-scale targeted mutagenesis in Brblockica napus using a pooled CRISPR library. Genome Res. 33, 798–809 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875–882 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, R. et al. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nat. Plants 7, 888–892 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Beying, N. et al. CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat. Plants 6, 638–645 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rönspies, M. et al. CRISPR–Cas-mediated chromosome engineering for crop improvement and synthetic biology. Nat. Plants 7, 566–573 (2021).

    PubMed 

    Google Scholar
     

  • Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, O. X. et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11, 1178 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat. Plants 7, 1445–1452 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455–460 (2022). This study demonstrates the ability to use multiplex genome editing to breed elite wheat germplasm with enhanced disease resistance and increased yields through altering chromatin structure.

    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz, C. et al. CRISPR–Cas9-mediated 75.5-Mb inversion in maize. Nat. Plants 6, 1427–1431 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rönspies, M. et al. CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding. J. Exp. Bot. 72, 177–183 (2021).

    PubMed 

    Google Scholar
     

  • Rodríguez-Leal, D. et al. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017). This study presents a new approach to regulate gene transcription and explore the biology of quantitative trait loci using CRISPR–Cas9.

    PubMed 

    Google Scholar
     

  • Xue, C. et al. Tuning plant phenotypes by precise, graded downregulation of gene expression. Nat. Biotechnol. 41, 1758–1764 (2023). This study introduces a new strategy to downregulate protein translation and precisely modulate plant phenotypes by engineering uORFs.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. Nat. Biotechnol. 36, 894–898 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Xing, S. et al. Fine-tuning sugar content in strawberry. Genome Biol. 21, 230 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, X. et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403–1411 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tian, J. et al. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. Sci. China Life Sci. 67, 1715–1726 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 42, 484–497 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Yu, G. et al. Prediction of efficiencies for diverse prime editing systems in multiple cell types. Cell 186, 2256–2272 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2024).


    Google Scholar
     

  • He, Y. et al. Protein language models-blockisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing. Mol. Cell 84, 1257–1270 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182–3195 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Pacesa, M. et al. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, Y. et al. CRISPR-GPT: an LLM agent for automated design of gene-editing experiments. Preprint at bioRxiv (2024).

  • Huang, P. S. et al. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, N. R. et al. Atomically accurate de novo design of antibodies with RFdiffusion. Preprint at bioRxiv (2024). This research proposed a computational design algorithm that can design antibodies to bind user-specified epitopes.

  • Sesterhenn, F. et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368, eaay5051 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Notin, P. et al. Machine learning for functional protein design. Nat. Biotechnol. 42, 216–228 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Zambaldi, V. et al. De novo design of high-affinity protein binders with AlphaProteo. Preprint at (2024).

  • Baker, D. & Church, G. Protein design meets biosecurity. Science 383, 349 (2024).

    PubMed 

    Google Scholar
     

  • Yeh, A. H. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Protein design using structure-prediction networks: AlphaFold and RoseTTAFold as protein structure foundation models. Cold Spring Harbor Perspect. Biol. 16, a041472 (2024).

    CAS 

    Google Scholar
     

  • Cao, L. et al. Design of protein-binding proteins from the target structure alone. Nature 605, 551–560 (2022). This study provides a general approach to design protein binders.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, K. et al. Sequence-specific targeting of intrinsically disordered protein regions. Preprint at bioRxiv (2024).

  • Kourelis, J. et al. NLR immune receptor–nanobody fusions confer plant disease resistance. Science 379, 934–939 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, D. et al. Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29, 156–168 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Enzymatic degradation of deoxynivalenol with the engineered detoxification enzyme Fhb7. JACS Au 4, 619–634 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, C. et al. Scalable protein design using optimization in a relaxed sequence space. Science 386, 439–445 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herud-Sikimić, O. et al. A biosensor for the direct visualization of auxin. Nature 592, 768–772 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Tissue-specific acblockulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nat. Plants 5, 1012–1021 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • An, L. et al. Binding and sensing diverse small molecules using shape-complementary pseudocycles. Science 385, 276–282 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024). This study develops RoseTTAFold All-Atom and RoseTTAFold diffusion All-Atom, which allow researchers to predict protein–biomolecule complexes and design small molecule binders, respectively.

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, L. et al. De novo design of drug-binding proteins with predictable binding energy and specificity. Science 384, 106–112 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horaruang, W. et al. Engineering a K+ channel ‘sensory antenna’ enhances stomatal kinetics, water use efficiency and photosynthesis. Nat. Plants 8, 1262–1274 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Structural insights into ion selectivity and transport mechanisms of Oryza sativa HKT2;1 and HKT2;2/1 transporters. Nat. Plants 10, 633–644 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C. et al. Computational design of transmembrane pores. Nature 585, 129–134 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, A. J. et al. Constructing ion channels from water-soluble α-helical barrels. Nat. Chem. 13, 643–650 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, G. et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528–3541 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186, 2656–2671 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Förderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, F. et al. Activation of the helper NRC4 immune receptor forms a hexameric resistosome. Cell 187, 4877–4889 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Berhanu, S. et al. Sculpting conducting nanopore size and shape through de novo protein design. Science 385, 282–288 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Bottom-up design of calcium channels from defined selectivity filter geometry. Preprint at bioRxiv (2024).

  • Zheng, K. et al. ESM All-Atom: multi-scale protein language model for unified molecular modeling. Preprint at (2024).

  • Collins, A. S. P. et al. Parallel, continuous monitoring and quantification of programmed cell death in plant tissue. Adv. Sci. 11, 2400225 (2024).

    CAS 

    Google Scholar
     

  • Borowsky, A. T. & Bailey-Serres, J. Rewiring gene circuitry for plant improvement. Nat. Genet. 56, 1574–1582 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Oliva, R. et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 37, 1344–1350 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. De novo design of protein logic gates. Science 368, 78–84 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rui, Z. et al. High-throughput proximal ground crop phenotyping systems—a comprehensive review. Comput. Electron. Agric. 224, 109108 (2024).


    Google Scholar
     

  • Li, G. et al. The sequences of 1504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell 29, 1218–1231 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, J. P. Harnessing root architecture to address global challenges. Plant J. 109, 415–431 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Scharwies, J. D. et al. Moisture-responsive root-branching pathways identified in diverse maize breeding germplasm. Science 387, 666–673 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. et al. Ultra-wideband microwave imaging system for root phenotyping. Sensors 22, 2031 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagel, K. A. et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct. Plant Biol. 39, 891–904 (2012).

    PubMed 

    Google Scholar
     

  • Yu, P. et al. Seedling root system adaptation to water availability during maize domestication and global expansion. Nat. Genet. 56, 1245–1256 (2024). This study reveals that reshaping maize root architecture by reducing the seed root number and increasing lateral root density enhances drought resilience.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Genome-wide blockociation studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185 (2021). This study utilized a HTP system to extract drought tolerance phenotypes in maize and employed genetic methods such as GWAS in the identification of genes controlling drought resistance in maize.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Tamimi, N. et al. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7, 13342 (2016). This work uses HTP and GWAS to study salt tolerance in rice, thereby gaining a deeper understanding of the early response of rice to salinity.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J. et al. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide blockociation studies in wheat. Plant Biotechnol. J. 21, 1966–1977 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B. et al. Phenomics-based GWAS ***ysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol. J. 18, 2533–2544 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton, M. et al. Deciphering salt stress responses in Solanum pimpinellifolium through high-throughput phenotyping. Plant J. 119, 2514–2537 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W. et al. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Mol. Plant 16, 354–373 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Crain, J. et al. Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11, 170043 (2018).


    Google Scholar
     

  • Lane, H. M. et al. Phenomic selection and prediction of maize grain yield from near-infrared reflectance spectroscopy of kernels. Plant Phenome J. 3, e20002 (2020).


    Google Scholar
     

  • Tross, M. C. et al. Data driven discovery and quantification of hyperspectral leaf reflectance phenotypes across a maize diversity panel. Plant Phenome J. 7, e20106 (2024).


    Google Scholar
     

  • Rincent, R. et al. Phenomic selection is a low-cost and high-throughput method based on indirect predictions: proof of concept on wheat and poplar. G3 8, 3961–3972 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs, J. A. et al. Active vision and surface reconstruction for 3D plant shoot modelling. IEEE/ACM Trans. Comput. Biol. Bioinformatics 17, 1907–1917 (2020).


    Google Scholar
     

  • Jin, S. et al. Lidar sheds new light on plant phenomics for plant breeding and management: recent advances and future prospects. ISPRS 171, 202–223 (2021).


    Google Scholar
     

  • Wagner, R. et al. Imagine all the plants: evaluation of a light-field camera for on-site crop growth monitoring. Remote Sens. 8, 823 (2016).


    Google Scholar
     

  • Chang, J. et al. EI-MVSNet: epipolar-guided multi-view stereo network with interval-aware label. IEEE Trans. Image Process. 33, 753–766 (2024).

    PubMed 

    Google Scholar
     

  • Gu, Y. et al. Novel 3D photosynthetic traits derived from the fusion of UAV LiDAR point cloud and multispectral imagery in wheat. Remote Sens. Environ. 311, 114244 (2024).


    Google Scholar
     

  • Zhang, Y. et al. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic ***ysis. Plant Biotechnol. J. 19, 35–50 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Plant microphenotype: from innovative imaging to computational ***ysis. Plant Biotechnol. J. 22, 802–818 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell 185, 3408–3425 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ovečka, M. et al. Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants 4, 639–650 (2018). This work shows that light-sheet fluorescence microscopy methods collectively represent a major breakthrough in the development of bio-imaging of living multicellular organisms.

    PubMed 

    Google Scholar
     

  • Payne, W. Z. & Kurouski, D. Raman spectroscopy enables phenotyping and blockessment of nutrition values of plants: a review. Plant Methods 17, 78 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonçalves, M. T. V. et al. Near-infrared spectroscopy outperforms genomics for predicting sugarcane feedstock quality traits. PLoS ONE 16, e0236853 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sineshchekov, V. A. Applications of fluorescence spectroscopy in the investigation of plant phytochrome invivo. Plant Physiol. Biochem. 208, 108434 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, M. et al. Fourier transform infrared spectroscopy as a non-destructive method for ***ysing herbarium specimens. Biol. Lett. 19, 20220546 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hacisalihoglu, G. & Armstrong, P. Crop seed phenomics: focus on non-destructive functional trait phenotyping methods and applications. Plants 12, 1177 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kou, T. et al. Terahertz spectroscopy for accurate identification of Panax quinquefolium basing on nonconjugated 24(R)-pseudoginsenoside F11. Plant Phenomics 2021, 6793457 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horn, P. J. & Chapman, K. D. Imaging plant metabolism in situ. J. Exp. Bot. 75, 1654–1670 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Song, P. et al. High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J. 9, 633–645 (2021).


    Google Scholar
     

  • Wen, W. et al. Standard framework construction of technology and equipment for big data in crop phenomics. Engineering 42, 175–184 (2024).


    Google Scholar
     

  • Teng, Z. et al. Panicle-Cloud: an open and AI-powered cloud computing platform for quantifying rice panicles from drone-collected imagery to enable the clblockification of yield production in rice. Plant Phenomics 5, 0105 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, X. et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243–253 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Engineering rice genomes towards green super rice. Curr. Opin. Plant Biol. 82, 102664 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Moor, M. et al. Foundation models for generalist medical artificial intelligence. Nature 616, 259–265 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. A generalist vision–language foundation model for diverse biomedical tasks. Nat. Med. 30, 3129–3141 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. The CropGPT project: call for a global, coordinated effort in precision design breeding driven by AI using biological big data. Mol. Plant 17, 215–218 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, S. et al. DeepG2P: fusing multi-modal data to improve crop production. Preprint at (2022).

  • Wang, H. et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 368, eaba5435 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. High-resolution satellite imagery applications in crop phenotyping: an overview. Comput. Electron. Agric. 175, 105584 (2020).


    Google Scholar
     

  • Jiang, Z. et al. Combining UAV-RGB high-throughput field phenotyping and genome-wide blockociation study to reveal genetic variation of rice germplasms in dynamic response to drought stress. New Phytol. 232, 440–455 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, S. et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat. Genet. 49, 773–779 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Qi, X. et al. Genome editing enables next-generation hybrid seed production technology. Mol. Plant 13, 1262–1269 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, K. et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705–708 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl Acad. Sci. USA 118, e2022239118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, K. et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57, 1299–1310 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, G. et al. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grblock stomata. Plant Cell 34, 1890–1911 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, H. et al. A novel in vivo genome editing doubled haploid system for Zea mays L. Nat. Plants 10, 1493–1501 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

    PubMed 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *