Low, K. J. Y., Venkatraman, A., Mehta, J. S. & Pervushin, K. Molecular mechanisms of amyloid disaggregation. J. Adv. Res. 36, 113–132 (2022).
Hou, K. et al. D-peptide-magnetic nanoparticles fragment tau fibrils and rescue behavioral deficits in a mouse model of Alzheimer’s disease. Sci. Adv. 10, eadl2991 (2024).
Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–631 (1992).
Kollmer, M. et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 10, 4760 (2019).
Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023).
Lee, V. M.-Y., Balin, B. J., Otvos, L. & Trojanowski, J. Q. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678 (1991).
Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).
Nachman, E. et al. Dis***embly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. J. Biol. Chem. 295, 9676–9690 (2020).
Al-Hilaly, Y. K. et al. Cysteine-independent inhibition of Alzheimer’s disease-like paired helical filament ***embly by leuco-methylthioninium (LMT). J. Mol. Biol. 430, 4119–4131 (2018).
Seidler, P. M. et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat. Commun. 13, 5451 (2022).
Wischik, C. M., Harrington, C. R. & Storey, J. M. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 88, 529–539 (2014).
Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011).
Chong, P., Sia, C., Tripet, B., James, O. & Klein, M. Comparative immunological properties of enantiomeric peptides. Lett. Pept. Sci. 3, 99–106 (1996).
Peters, O., Cosma, N. C., Kutzsche, J. & Willbold, D. A randomized, placebo‐controlled, double‐blind, phase 1b study to evaluate the safety, tolerability and pharmacodynamics of PRI‐002 in early AD. Alzheimers Dement. 18, e069253 (2022).
Weismiller, H. A., Holub, T. J., Krzesinski, B. J. & Margittai, M. A thiol-based intramolecular redox switch in four-repeat tau controls fibril ***embly and dis***embly. J. Biol. Chem. 297, 101021 (2021).
Prifti, E. et al. The two cysteines of tau protein are functionally distinct and contribute differentially to its pathogenicity in vivo. J. Neurosci. 41, 797–810 (2021).
Kumar, T. K. S., Samuel, D., Jayaraman, G., Srimathi, T. & Yu, C. The role of proline in the prevention of aggregation during protein folding in vitro. Biochem. Mol. Biol. Int. 46, 509–517 (1998).
Gibbons, G. S. et al. Detection of Alzheimer’s disease (AD) specific tau pathology with conformation-selective anti-tau monoclonal antibody in co-morbid frontotemporal lobar degeneration-tau (FTLD-tau). Acta Neuropathol. Commun. 7, 34 (2019).
Willbold, D., Strodel, B., Schröder, G. F., Hoyer, W. & Heise, H. Amyloid-type protein aggregation and prion-like properties of amyloids. Chem. Rev. 121, 8285–8307 (2021).
Holmes, B. B. et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl Acad. Sci. USA 111, E4376–E4385 (2014).
Serpell, L. C. Alzheimer’s amyloid fibrils: structure and ***embly. Biochim. Biophys. Acta 1502, 16–30 (2000).
Adamcik, J. & Mezzenga, R. Study of amyloid fibrils via atomic force microscopy. Curr. Opin. Colloid Interface Sci. 17, 369–376 (2012).
Lutter, L. et al. Structural identification of individual helical amyloid filaments by integration of cryo-electron microscopy-derived maps in comparative morphometric atomic force microscopy image ***ysis. J. Mol. Biol. 434, 167466 (2022).
Close, W. et al. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9, 699 (2018).
Wang, M. et al. Left or right: how does amino acid chirality affect the handedness of nanostructures self-***embled from short amphiphilic peptides? J. Am. Chem. Soc. 139, 4185–4194 (2017).
Ke, P. C. et al. Half a century of amyloids: past, present and future. Chem. Soc. Rev. 49, 5473–5509 (2020).
Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).
Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).
Hughes, E., Burke, R. M. & Doig, A. J. Inhibition of toxicity in the β-amyloid peptide fragment β-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J. Biol. Chem. 275, 25109–25115 (2000).
Fitzpatrick, A. W. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).
Franco, A. et al. All-or-none amyloid dis***embly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species. Proc. Natl Acad. Sci. USA 118, e2105548118 (2021).
Cribbs, D. H., Pike, C. J., Weinstein, S. L., Velazquez, P. & Cotman, C. W. All-D-enantiomers of β-amyloid exhibit similar biological properties to all-L-β-amyloids. J. Biol. Chem. 272, 7431–7436 (1997).
Barré, P. & Eliezer, D. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule‐binding repeats in filament nucleation. Protein Sci. 22, 1037–1048 (2013).
Murray, K. A. et al. Small molecules disaggregate α-synuclein and prevent seeding from patient brain-derived fibrils. Proc. Natl Acad. Sci. USA 120, e2217835120 (2023).
Lu, J. et al. CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat. Commun. 11, 4090 (2020).
Shi, Y. et al. Structure-based cl***ification of tauopathies. Nature 598, 359–363 (2021).
Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 585, 464–469 (2020).
Xue, W.-F. Trace_y: software algorithms for structural ***ysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 33, 363–371 (2025).
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
Wagner, T. et al. Two particle-picking procedures for filamentous proteins: SPHIRE-crYOLO filament mode and SPHIRE-STRIPER. Acta Crystallogr. D 76, 613–620 (2020).
He, S. & Scheres, S. H. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).
Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L. & Towns, J. ACCESS: advancing innovation: NSF’s advanced cyberinfrastructure coordination ecosystem: services & support. In PEARC’23: Practice and Experience in Advanced Research Computing 2023 (eds Sinkovits, R. et al.) 173–176 (Association for Computing Machinery, 2023).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
Shi, Y. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 141, 697–708 (2021).
Lövestam, S. et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife 11, e76494 (2022).
Heath, G. R., Micklethwaite, E. & Storer, T. M. NanoLocz: image ***ysis platform for AFM, high-speed AFM, and localization AFM. Small Methods 8, 2301766 (2024).
Kleffner, R. et al. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics 33, 2765–2767 (2017).
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).
Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).
Williamson, M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73, 1–16 (2013).