Close

How short peptides dis***emble tau fibrils in Alzheimer’s disease

  • Low, K. J. Y., Venkatraman, A., Mehta, J. S. & Pervushin, K. Molecular mechanisms of amyloid disaggregation. J. Adv. Res. 36, 113–132 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, K. et al. D-peptide-magnetic nanoparticles fragment tau fibrils and rescue behavioral deficits in a mouse model of Alzheimer’s disease. Sci. Adv. 10, eadl2991 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–631 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kollmer, M. et al. Cryo-EM structure and polymorphism of Aβ amyloid fibrils purified from Alzheimer’s brain tissue. Nat. Commun. 10, 4760 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, V. M.-Y., Balin, B. J., Otvos, L. & Trojanowski, J. Q. A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nachman, E. et al. Dis***embly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species. J. Biol. Chem. 295, 9676–9690 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Hilaly, Y. K. et al. Cysteine-independent inhibition of Alzheimer’s disease-like paired helical filament ***embly by leuco-methylthioninium (LMT). J. Mol. Biol. 430, 4119–4131 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidler, P. M. et al. Structure-based discovery of small molecules that disaggregate Alzheimer’s disease tissue derived tau fibrils in vitro. Nat. Commun. 13, 5451 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wischik, C. M., Harrington, C. R. & Storey, J. M. Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem. Pharmacol. 88, 529–539 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, P., Sia, C., Tripet, B., James, O. & Klein, M. Comparative immunological properties of enantiomeric peptides. Lett. Pept. Sci. 3, 99–106 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Peters, O., Cosma, N. C., Kutzsche, J. & Willbold, D. A randomized, placebo‐controlled, double‐blind, phase 1b study to evaluate the safety, tolerability and pharmacodynamics of PRI‐002 in early AD. Alzheimers Dement. 18, e069253 (2022).

    Article 

    Google Scholar
     

  • Weismiller, H. A., Holub, T. J., Krzesinski, B. J. & Margittai, M. A thiol-based intramolecular redox switch in four-repeat tau controls fibril ***embly and dis***embly. J. Biol. Chem. 297, 101021 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prifti, E. et al. The two cysteines of tau protein are functionally distinct and contribute differentially to its pathogenicity in vivo. J. Neurosci. 41, 797–810 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, T. K. S., Samuel, D., Jayaraman, G., Srimathi, T. & Yu, C. The role of proline in the prevention of aggregation during protein folding in vitro. Biochem. Mol. Biol. Int. 46, 509–517 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Gibbons, G. S. et al. Detection of Alzheimer’s disease (AD) specific tau pathology with conformation-selective anti-tau monoclonal antibody in co-morbid frontotemporal lobar degeneration-tau (FTLD-tau). Acta Neuropathol. Commun. 7, 34 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willbold, D., Strodel, B., Schröder, G. F., Hoyer, W. & Heise, H. Amyloid-type protein aggregation and prion-like properties of amyloids. Chem. Rev. 121, 8285–8307 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmes, B. B. et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl Acad. Sci. USA 111, E4376–E4385 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serpell, L. C. Alzheimer’s amyloid fibrils: structure and ***embly. Biochim. Biophys. Acta 1502, 16–30 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamcik, J. & Mezzenga, R. Study of amyloid fibrils via atomic force microscopy. Curr. Opin. Colloid Interface Sci. 17, 369–376 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lutter, L. et al. Structural identification of individual helical amyloid filaments by integration of cryo-electron microscopy-derived maps in comparative morphometric atomic force microscopy image ***ysis. J. Mol. Biol. 434, 167466 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Close, W. et al. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9, 699 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Left or right: how does amino acid chirality affect the handedness of nanostructures self-***embled from short amphiphilic peptides? J. Am. Chem. Soc. 139, 4185–4194 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke, P. C. et al. Half a century of amyloids: past, present and future. Chem. Soc. Rev. 49, 5473–5509 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, E., Burke, R. M. & Doig, A. J. Inhibition of toxicity in the β-amyloid peptide fragment β-(25–35) using N-methylated derivatives: a general strategy to prevent amyloid formation. J. Biol. Chem. 275, 25109–25115 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, A. W. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547, 185–190 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco, A. et al. All-or-none amyloid dis***embly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species. Proc. Natl Acad. Sci. USA 118, e2105548118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cribbs, D. H., Pike, C. J., Weinstein, S. L., Velazquez, P. & Cotman, C. W. All-D-enantiomers of β-amyloid exhibit similar biological properties to all-L-β-amyloids. J. Biol. Chem. 272, 7431–7436 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barré, P. & Eliezer, D. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule‐binding repeats in filament nucleation. Protein Sci. 22, 1037–1048 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, K. A. et al. Small molecules disaggregate α-synuclein and prevent seeding from patient brain-derived fibrils. Proc. Natl Acad. Sci. USA 120, e2217835120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat. Commun. 11, 4090 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. et al. Structure-based cl***ification of tauopathies. Nature 598, 359–363 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 585, 464–469 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, W.-F. Trace_y: software algorithms for structural ***ysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 33, 363–371 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, T. et al. Two particle-picking procedures for filamentous proteins: SPHIRE-crYOLO filament mode and SPHIRE-STRIPER. Acta Crystallogr. D 76, 613–620 (2020).

    Article 
    CAS 

    Google Scholar
     

  • He, S. & Scheres, S. H. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L. & Towns, J. ACCESS: advancing innovation: NSF’s advanced cyberinfrastructure coordination ecosystem: services & support. In PEARC’23: Practice and Experience in Advanced Research Computing 2023 (eds Sinkovits, R. et al.) 173–176 (Association for Computing Machinery, 2023).

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 141, 697–708 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lövestam, S. et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife 11, e76494 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath, G. R., Micklethwaite, E. & Storer, T. M. NanoLocz: image ***ysis platform for AFM, high-speed AFM, and localization AFM. Small Methods 8, 2301766 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kleffner, R. et al. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics 33, 2765–2767 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Williamson, M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73, 1–16 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *