Hippocampal representations drift in stable multisensory environments

  • Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42, 283–295 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driscoll, L. N., Duncker, L. & Harvey, C. D. Representational drift: emerging theories for continual learning and experimental future directions. Curr. Opin. Neurobiol. 76, 102609 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rubin, A., Geva, N., Sheintuch, L. & Ziv, Y. Hippocampal ensemble dynamics timestamp events in long-term memory. eLife 4, e12247 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupret, D., O’Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeh, S. & Clopath, C. Contribution of behavioural variability to representational drift. eLife 11, e77907 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberti, W. A., Schmid, T. A., Forli, A., Snyder, M. & Yartsev, M. M. A stable hippocampal code in freely flying bats. Nature 604, 98–103 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, L. T. & Best, P. J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature 558, 292–296 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, C., Madar, A. D. & Sheffield, M. E. J. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat. Commun. 12, 2977 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheintuch, L., Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Organization of hippocampal CA3 into correlated cell blockemblies supports a stable spatial code. Cell Rep. 42, 112119 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Time and experience differentially affect distinct aspects of hippocampal representational drift. Neuron 111, 2357–2366.e5 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Rule, M. E. et al. Stable task information from an unstable neural population. eLife 9, e51121 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aitken, F. & Kok, P. Hippocampal representations switch from errors to predictions during acquisition of predictive blockociations. Nat. Commun. 13, 3294 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mblocket, P., Qin, S. & Zavatone-Veth, J. A. Drifting neuronal representations: bug or feature? Biol. Cybern. 116, 253–266 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Mallory, C. S., Hardcastle, K., Bant, J. S. & Giocomo, L. M. Grid scale drives the scale and long-term stability of place maps. Nat. Neurosci. 21, 270–282 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNaughton, B. L., Barnes, C. A. & O’Keefe, J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Tchernichovski, O., Benjamini, Y. & Golani, I. The dynamics of long-term exploration in the rat: Part I. A phase-plane blockysis of the relationship between location and velocity. Biol. Cybern. 78, 423–432 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Moreno, M. M. et al. Olfactory perceptual learning requires adult neurogenesis. Proc. Natl Acad. Sci. USA 106, 17980–17985 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trinh, K. & Storm, D. R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6, 519–525 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Zou, J. et al. Targeted deletion of ERK5 MAP kinase in the developing nervous system impairs development of GABAergic interneurons in the main olfactory bulb and behavioral discrimination between structurally similar odorants. J. Neurosci. 32, 4118–4132 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radvansky, B. A. & Dombeck, D. A. An olfactory virtual reality system for mice. Nat. Commun. 9, 839 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radvansky, B. A., Oh, J. Y., Climer, J. R. & Dombeck, D. A. Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Rep. 36, 109444 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, T. J. & Frankland, P. W. Forgetting as a form of adaptive engram cell plasticity. Nat. Rev. Neurosci. 23, 173–186 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Keinath, A. T., Mosser, C.-A. & Brandon, M. P. The representation of context in mouse hippocampus is preserved despite neural drift. Nat. Commun. 13, 2415 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khatib, D. et al. Active experience, not time, determines within-day representational drift in dorsal CA1. Neuron 111, 2348–2356.e5 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan, S. & Sheffield, M. E. J. Reward expectation reduces representational drift in the hippocampus. Preprint at bioRxiv (2023).

  • Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheffield, M. E. J., Adoff, M. D. & Dombeck, D. A. Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron 96, 490–504.e5 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rechavi, Y., Rubin, A., Yizhar, O. & Ziv, Y. Exercise increases information content and affects long-term stability of hippocampal place codes. Cell Rep. 41, 111695 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Snoo, M. L., Miller, A. M. P., Ramsaran, A. I., Josselyn, S. A. & Frankland, P. W. Exercise accelerates place cell representational drift. Curr. Biol. 33, R96–R97 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Priestley, J. B., Bowler, J. C., Rolotti, S. V., Fusi, S. & Losonczy, A. Signatures of rapid plasticity in hippocampal CA1 representations during novel experiences. Neuron 110, 1978–1992.e6 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauthier, J. L. & Tank, D. W. A dedicated population for reward coding in the hippocampus. Neuron 99, 179–193.e7 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettit, N. L., Yuan, X. C. & Harvey, C. D. Hippocampal place codes are gated by behavioral engagement. Nat. Neurosci. 25, 561–566 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katlowitz, K. A., Picardo, M. A. & Long, M. A. Stable sequential activity underlying the maintenance of a precisely executed skilled behavior. Neuron 98, 1133–1140.e3 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberti, W. A. et al. Unstable neurons underlie a stable learned behavior. Nat. Neurosci. 19, 1665–1671 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benavides-Piccione, R. et al. Differential structure of hippocampal CA1 pyramidal neurons in the human and mouse. Cereb. Cortex 30, 730–752 (2020).

    PubMed 

    Google Scholar
     

  • Climer, J. R. & Dombeck, D. A. Information theoretic approaches to deciphering the neural code with functional fluorescence imaging. eNeuro (2021).

  • Dewan, A. et al. Single olfactory receptors set odor detection thresholds. Nat. Commun. 9, 2887 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, M. I. & Jeffery, K. J. Heterogeneous modulation of place cell firing by changes in context. J. Neurosci. 23, 8827–8835 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. & Manahan-Vaughan, D. Spatial olfactory learning contributes to place field formation in the hippocampus. Cereb. Cortex 25, 423–432 (2015).

    PubMed 

    Google Scholar
     

  • Save, E., Nerad, L. & Poucet, B. Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10, 64–76 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Muller, R. U. & Kubie, J. L. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bostock, E., Muller, R. U. & Kubie, J. L. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1, 193–205 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Dozio, N., Maggioni, E., Pittera, D., Gallace, A. & Obrist, M. May I smell your attention: exploration of smell and sound for visuospatial attention in virtual reality. Front. Psychol. 12, 671470 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanini, F. et al. A distributed neural code in the dentate gyrus and in CA1. Neuron 107, 703–716.e4 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, A. et al. Revealing neural correlates of behavior without behavioral measurements. Nat. Commun. 10, 4745 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snyder, M. C., Qi, K. K. & Yartsev, M. M. Neural representation of human experimenters in the bat hippocampus. Nat. Neurosci. 27, 1675–1679 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, Y., Dong, C., Krishnan, S. & Sheffield, M. E. J. The precision of place fields governs their fate across epochs of experience. eNeuro (2023).

  • Aikath, D., Weible, A. P., Rowland, D. C. & Kentros, C. G. Role of self-generated odor cues in contextual representation. Hippocampus 24, 1039–1051 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in hippocampal neuronal activity. Nature 397, 613–616 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Epsztein, J., Brecht, M. & Lee, A. K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delamare, G., Zaki, Y., Cai, D. J. & Clopath, C. Drift of neural ensembles driven by slow fluctuations of intrinsic excitability. eLife 12, RP88053 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, M. M., Oliveira, F. A. & Disterhoft, J. F. Learning and aging related changes in intrinsic neuronal excitability. Front. Ageing Neurosci. (2010).

  • Las, L. & Ulanovsky, N. in Space, Time and Memory in the Hippocampal Formation (eds Derdikman, D. & Knierim, J. J.) 431–461 (2014).

  • Heys, J. G., MacLeod, K. M., Moss, C. F. & Hblockelmo, M. E. Bat and rat neurons differ in theta-frequency resonance despite similar coding of space. Science 340, 363–367 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen, K., Harpaz, N., Dhawale, A., Wolff, S. & Ölveczky, B. Long-term stability of single neuron activity in the motor system. Nat. Neurosci. 25, 1664–1674 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhawale, A. K., Wolff, S. B. E., Ko, R. & Ölveczky, B. P. The basal ganglia control the detailed kinematics of learned motor skills. Nat. Neurosci. 24, 1256–1269 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. Nature 615, 884–891 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronov, D. & Tank, D. W. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system. Neuron 84, 442–456 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachitariu M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv (2017).

  • Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Rep. 21, 1102–1115 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K., Ginzburg, I., McNaughton, B. L. & Sejnowski, T. J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Belkin, M. & Niyogi, P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003).

    MATH 

    Google Scholar
     

  • Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264–278 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Climer, J., Davoudi, H., Oh, J. & Dombeck, D. Hippocampal representations drift in stable multisensory environments (1.0) [Data set]. Zenodo (2025).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *