Close

Glycosaminoglycan-driven lipoprotein uptake protects tumours from ferroptosis

  • Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V. & Fendt, S.-M. Lipid metabolism in cancer: new perspectives and emerging mechanisms. Dev. Cell 56, 1363–1393 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riscal, R. et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov. 11, 3106–3125 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villa, G. R. et al. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers. Cancer Cell 30, 683–693 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medes, G., Thomas, A. & Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 13, 27–29 (1953).

    CAS 
    PubMed 

    Google Scholar
     

  • Mashima, T., Seimiya, H. & Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer 100, 1369–1372 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang, X. et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9, 1673–1685 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freitas, F. P. et al. 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. Nature 626, 401–410 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Vitamin D suppresses ferroptosis and protects against neonatal hypoxic-ischemic encephalopathy by activating the Nrf2/HO-1 pathway. Transl. Pediatr. 11, 1633–1644 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traber, M. G. & Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 43, 4–15 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quehenberger, O. & Dennis, E. A. The human plasma lipidome. N. Engl. J. Med. 365, 1812–1823 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoofnagle, A. N. & Heinecke, J. W. Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins. J. Lipid Res. 50, 1967–1975 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, R., Farmer, L. A., Zilka, O., Van Kessel, A. T. M. & Pratt, D. A. Beyond DPPH: use of fluorescence-enabled inhibited autoxidation to predict oxidative cell death rescue. Cell Chem. Biol. 26, 1594–1607 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ou, W. et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med. 112, 597–607 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behrens, W. A. & Madère, R. Alpha- and gamma tocopherol concentrations in human serum. J. Am. Coll. Nutr. 5, 91–96 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Traber, M. G. & Arai, H. Molecular mechanisms of vitamin E transport. Annu. Rev. Nutr. 19, 343–355 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spickett, C. M. The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 1, 145–152 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, J. et al. PRDX6 dictates ferroptosis sensitivity by directing cellular selenium utilization. Mol. Cell 84, 4629–4644 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda, M. et al. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15, 1206–1216 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pomin, V. H. & Mulloy, B. Glycosaminoglycans and proteoglycans. Pharmaceuticals 11, 27 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasisekharan, R., Shriver, Z., Venkataraman, G. & Narayanasami, U. Roles of heparan-sulphate glycosaminoglycans in cancer. Nat. Rev. Cancer 2, 521–528 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asimakopoulou, A. P., Theocharis, A. D., Tzanakakis, G. N. & Karamanos, N. K. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo 22, 385–389 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volpi, N. & Tarugi, P. Influence of chondroitin sulfate charge density, sulfate group position, and molecular mass on Cu2+-mediated oxidation of human low-density lipoproteins: effect of normal human plasma-derived chondroitin sulfate. J. Biochem. 125, 297–304 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koppula, P., Zhang, Y., Shi, J., Li, W. & Gan, B. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J. Biol. Chem. 292, 14240–14249 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flood, C. et al. Identification of the proteoglycan binding site in apolipoprotein B48. J. Biol. Chem. 277, 32228–32233 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, J. L., Basu, S. K., Brunschede, G. Y. & Brown, M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell 7, 85–95 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whereat, A. F. & Staple, E. The preparation of serum lipoproteins labeled with radioactive cholesterol. Arch. Biochem. Biophys. 90, 224–228 (1960).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaassen, C. D. & Boles, J. W. Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J. 11, 404–418 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kearns, A. E., Campbell, S. C., Westley, J. & Schwartz, N. B. Initiation of chondroitin sulfate biosynthesis: a kinetic analysis of UDP-d-xylose: core protein β-d-xylosyltransferase. Biochemistry 30, 7477–7483 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, M. S., Kovanen, P. T. & Goldstein, J. L. Regulation of plasma cholesterol by lipoprotein receptors. Science 212, 628–635 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pownall, H. J., Rosales, C., Gillard, B. K. & Gotto, A. M. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat. Rev. Cardiol. 18, 712–723 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Ribosome stalling during selenoprotein translation exposes a ferroptosis vulnerability. Nat. Chem. Biol. 18, 751–761 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurokawa, S., Bellinger, F. P., Hill, K. E., Burk, R. F. & Berry, M. J. Isoform-specific binding of selenoprotein P to the β-propeller domain of apolipoprotein E receptor 2 mediates selenium supply. J. Biol. Chem. 289, 9195–9207 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basu, A., Patel, N. G., Nicholson, E. D. & Weiss, R. J. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am. J. Physiol. Cell Physiol. 322, C849–C864 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wight, T. N. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr. Opin. Cell Biol. 14, 617–623 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nandadasa, S. et al. The versican-hyaluronan complex provides an essential extracellular matrix niche for Flk1+ hematoendothelial progenitors. Matrix Biol. 97, 40–57 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noborn, F. et al. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans. Sci. Rep. 6, 34537 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, F. M., Best, K. B. & Bell, J. D. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta 1565, 123–128 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D., Shriver, Z., Venkataraman, G., El Shabrawi, Y. & Sasisekharan, R. Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc. Natl Acad. Sci. USA 99, 568–573 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinz, R. D., Willis, C. M., Viloria-Petit, A. & Klüppel, M. Elimination of breast tumor-associated chondroitin sulfate promotes metastasis. Genet. Mol. Res. 10, 3901–3913 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, X., Li, Q., Che, X., Wang, Q. & Wu, G. The uniqueness of clear cell renal cell carcinoma: summary of the process and abnormality of glucose metabolism and lipid metabolism in ccRCC. Front. Oncol. 11, 727778 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatto, F. et al. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evanko, S. P. et al. A role for HAPLN1 during phenotypic modulation of human lung fibroblasts in vitro. J. Histochem. Cytochem. 68, 797–811 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elias, R. et al. A renal cell carcinoma tumorgraft platform to advance precision medicine. Cell Rep. 37, 110055 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, E. A. et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306, 1549–1556 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacArthur, J. M. et al. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117, 153–164 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurt, E., Bondjers, G. & Camejo, G. Interaction of LDL with human arterial proteoglycans stimulates its uptake by human monocyte-derived macrophages. J. Lipid Res. 31, 443–454 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandes, C. et al. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not α2-macroglobulin. J. Biol. Chem. 276, 22160–22169 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Bermudez, J. et al. Adaptive stimulation of macropinocytosis overcomes aspartate limitation in cancer cells under hypoxia. Nat. Metab. 4, 724–738 (2022).

  • Guo, L. S., Hamilton, R. L., Goerke, J., Weinstein, J. N. & Havel, R. J. Interaction of unilamellar liposomes with serum lipoproteins and apolipoproteins. J. Lipid Res. 21, 993–1003 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giera, M. et al. XCMS-METLIN: data-driven metabolite, lipid, and chemical analysis. Mol. Syst. Biol. 20, 1153–1155 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, J., Guijas, C., Benton, H. P., Warth, B. & Siuzdak, G. METLIN MS2 molecular standards database: a broad chemical and biological resource. Nat. Methods 17, 953–954 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Leenheer, A. P., De Bevere, V. O., Cruyl, A. A. & Claeys, A. E. Determination of serum alpha-tocopherol (vitamin E) by high-performance liquid chromatography. Clin. Chem. 24, 585–590 (1978).

    Article 
    PubMed 

    Google Scholar
     

  • Mathieu, R. E. & Riley, C. P. Quantitation of ubiquinone (coenzyme Q10) in serum/plasma using liquid chromatography electrospray tandem mass spectrometry (ESI-LC-MS/MS). Methods Mol. Biol. 1378, 61–69 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, A. et al. Quantitative HILIC-Q-TOF-MS analysis of glycosaminoglycans and non-reducing end carbohydrate biomarkers via glycan reductive isotopic labeling. Preprint at ChemRxiv (2025).

  • Basu, A. & Weiss, R. J. Glycosaminoglycan analysis: purification, structural profiling, and GAG-protein interactions. Methods Mol. Biol. 2597, 159–176 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183–5199 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bezwada, D. et al. Mitochondrial complex I promotes kidney cancer metastasis. Nature 633, 923–931 (2024).

  • Pavía-Jiménez, A., Tcheuyap, V. T. & Brugarolas, J. Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nat. Protoc. 9, 1848–1859 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, Y., Aoki-Kinoshita, K. F., Ishihama, Y. & Okuda, S. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res. 49, D1523–D1528 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *