Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J. & Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 21–37 (2018).
Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).
Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).
Lanigan, L. T. et al. Multi-protease blockysis of Pleistocene bone proteomes. J. Proteomics 228, 103889 (2020).
Bleasdale, M. et al. Ancient proteins provide evidence of dairy consumption in eastern Africa. Nat. Commun. 12, 632 (2021).
Leichliter, J. N. et al. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment: results from a controlled feeding experiment. Chem. Geol. 563, 120047 (2021).
Warinner, C., Korzow Richter, K. & Collins, M. J. Paleoproteomics. Chem. Rev. 122, 13401–13446 (2022).
Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).
Madupe, P. P. et al. Results from an Australopithecus africanus dental enamel fragment confirm the potential of palaeoproteomics for South African Plio-Pleistocene fossil sites. S. Afr. J. Sci. (2025).
Leakey, M., Grossman, A., Gutiérrez, M. & Fleagle, J. G. Faunal change in the Turkana Basin during the late Oligocene and Miocene. Evol. Anthropol. 20, 238–253 (2011).
Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 5, e17092 (2016).
Demarchi, B. et al. Survival of mineral-bound peptides into the Miocene. eLife 11, e82849 (2022).
Paterson, R. S. et al. A 20+ Ma old enamel proteome from Canada’s High Arctic reveals diversification of Rhinocerotidae in the middle Eocene-Oligocene. Preprint at bioRxiv (2024).
Green, D. R. et al. Mapping the tooth enamel proteome and amelogenin phosphorylation onto mineralizing porcine tooth crowns. Front. Physiol. 10, 925 (2019).
P***ey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl Acad. Sci. USA 107, 11245–11249 (2010).
Brown, F. H. & McDougall, I. Geochronology of the Turkana depression of northern Kenya and southern Ethiopia. Evol. Anthropol. 20, 217–227 (2011).
Feibel, C. S. A geological history of the Turkana Basin. Evol. Anthropol. 20, 206–216 (2011).
Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl Acad. Sci. USA 108, 6509–6514 (2011).
Morlo, M., Friscia, A., Miller, E. R., Locke, E. & Nengo, I. Systematics and paleobiology of Carnivora and Hyaenodonta from the lower Miocene of Buluk, Kenya. Acta Palaeontol. Pol. 66, 465–484 (2021).
Liutkus-Pierce, C. M. et al. Reconstruction of the Early Miocene Critical Zone at Loperot, Southwestern Turkana, Kenya. Front. Ecol. Evol. 7, 44 (2019).
Nengo, I. et al. New infant cranium from the African Miocene sheds light on ape evolution. Nature 548, 169–174 (2017).
Anyonge, W. Fauna from a new lower Miocene locality west of Lake Turkana, Kenya. J. Vertebr. Paleontol. 11, 378–390 (1991).
Sousa, F. J. et al. New discovery of Oligocene strata in the Topernawi Formation, Turkana County, Kenya. Front. Earth Sci. 10, 799097 (2022).
Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).
Beniash, E. et al. Possible role of DMP1 in dentin mineralization. J. Struct. Biol. 174, 100–106 (2011).
Charone, S. et al. Proteomics of secretory-stage and maturation-stage enamel of genetically distinct mice. Caries Res. 50, 24–31 (2016).
Rangiani, A. et al. Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation. Int. J. Oral Sci. 4, 189–195 (2012).
Somogyi-Ganss, E. et al. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis. Cells Tissues Organs 195, 535–549 (2012).
Wang, X. et al. FAM20C plays an essential role in the formation of murine teeth. J. Biol. Chem. 287, 35934–35942 (2012).
Jagr, M. et al. Proteomic blockysis of dentin-enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur. J. Oral Sci. 127, 112–121 (2019).
Cleland, T. P., Schroeter, E. R. & Colleary, C. Diagenetiforms: a new term to explain protein changes as a result of diagenesis in paleoproteomics. J. Proteomics 230, 103992 (2021).
Acevedo, A. C. et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med. Genet. 16, 8 (2015).
Peppe, D. et al. Geochronology and terrestrial paleoenvironments of the Middle Miocene hominoid fossil-bearing strata at Buluk, Turkana Basin, Kenya. Geological Society of America Abstracts with Programs 56, abstr. 219-2 (2024).
Lihoreau, F., Boisserie, J. R., Manthi, F. K. & Ducrocq, S. Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa. Nat. Commun. 6, 6264 (2015).
Orliac, M., Boisserie, J. R., Maclatchy, L. & Lihoreau, F. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin. Proc. Natl Acad. Sci. USA 107, 11871–11876 (2010).
Cleland, T. P., Schroeter, E. R., Feranec, R. S. & Vashishth, D. Peptide sequences from the first Castoroides ohioensis skull and the utility of old museum collections for palaeoproteomics. Proc. R. Soc. B 283, 20160593 (2016).
Mackie, M. et al. Palaeoproteomic profiling of conservation layers on a 14th century Italian wall painting. Angew. Chem. Int. Ed. 57, 7369–7374 (2018).
Cleland, T. P., Schroeter, E. R. & Schweitzer, M. H. Biologically and diagenetically derived peptide modifications in moa collagens. Proc. R. Soc. B 282, 20150015 (2015).
Schroeter, E. R. & Cleland, T. P. Glutamine deamidation: an indicator of antiquity, or preservational quality? Rapid Commun. M*** Spectrom. 30, 251–255 (2016).
Brown, S. et al. Examining collagen preservation through glutamine deamidation at Denisova Cave. J. Archaeolog. Sci. 133, 105454 (2021).
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).
Nakayama, Y., Holcroft, J. & Ganss, B. Enamel hypomineralization and structural defects in amelotin-deficient mice. J. Dent. Res. 94, 697–705 (2015).
Turan, S. et al. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 46, 402–409 (2010).
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
Cleland, T. P. Human bone paleoproteomics utilizing the single-pot, solid-phase-enhanced sample preparation method to maximize detected proteins and reduce humics. J. Proteome Res. 17, 3976–3983 (2018).
Moggridge, S., Sorensen, P. H., Morin, G. B. & Hughes, C. S. Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. J. Proteome Res. 17, 1730–1740 (2018).
Rüther, P. L. et al. SPIN enables high throughput species identification of archaeological bone by proteomics. Nat. Commun. 13, 2458 (2022).