Close

Eighteen million years of diverse enamel proteomes from the East African Rift

  • Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J. & Turner-Walker, G. Diagenesis of archaeological bone and tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 491, 21–37 (2018).

    Article 

    Google Scholar
     

  • Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanigan, L. T. et al. Multi-protease blockysis of Pleistocene bone proteomes. J. Proteomics 228, 103889 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bleasdale, M. et al. Ancient proteins provide evidence of dairy consumption in eastern Africa. Nat. Commun. 12, 632 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leichliter, J. N. et al. Nitrogen isotopes in tooth enamel record diet and trophic level enrichment: results from a controlled feeding experiment. Chem. Geol. 563, 120047 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Warinner, C., Korzow Richter, K. & Collins, M. J. Paleoproteomics. Chem. Rev. 122, 13401–13446 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madupe, P. P. et al. Results from an Australopithecus africanus dental enamel fragment confirm the potential of palaeoproteomics for South African Plio-Pleistocene fossil sites. S. Afr. J. Sci. (2025).

  • Leakey, M., Grossman, A., Gutiérrez, M. & Fleagle, J. G. Faunal change in the Turkana Basin during the late Oligocene and Miocene. Evol. Anthropol. 20, 238–253 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. eLife 5, e17092 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demarchi, B. et al. Survival of mineral-bound peptides into the Miocene. eLife 11, e82849 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paterson, R. S. et al. A 20+ Ma old enamel proteome from Canada’s High Arctic reveals diversification of Rhinocerotidae in the middle Eocene-Oligocene. Preprint at bioRxiv (2024).

  • Green, D. R. et al. Mapping the tooth enamel proteome and amelogenin phosphorylation onto mineralizing porcine tooth crowns. Front. Physiol. 10, 925 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • P***ey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl Acad. Sci. USA 107, 11245–11249 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, F. H. & McDougall, I. Geochronology of the Turkana depression of northern Kenya and southern Ethiopia. Evol. Anthropol. 20, 217–227 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Feibel, C. S. A geological history of the Turkana Basin. Evol. Anthropol. 20, 206–216 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl Acad. Sci. USA 108, 6509–6514 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morlo, M., Friscia, A., Miller, E. R., Locke, E. & Nengo, I. Systematics and paleobiology of Carnivora and Hyaenodonta from the lower Miocene of Buluk, Kenya. Acta Palaeontol. Pol. 66, 465–484 (2021).

    Article 

    Google Scholar
     

  • Liutkus-Pierce, C. M. et al. Reconstruction of the Early Miocene Critical Zone at Loperot, Southwestern Turkana, Kenya. Front. Ecol. Evol. 7, 44 (2019).

    Article 

    Google Scholar
     

  • Nengo, I. et al. New infant cranium from the African Miocene sheds light on ape evolution. Nature 548, 169–174 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anyonge, W. Fauna from a new lower Miocene locality west of Lake Turkana, Kenya. J. Vertebr. Paleontol. 11, 378–390 (1991).

    Article 

    Google Scholar
     

  • Sousa, F. J. et al. New discovery of Oligocene strata in the Topernawi Formation, Turkana County, Kenya. Front. Earth Sci. 10, 799097 (2022).

    Article 

    Google Scholar
     

  • Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beniash, E. et al. Possible role of DMP1 in dentin mineralization. J. Struct. Biol. 174, 100–106 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charone, S. et al. Proteomics of secretory-stage and maturation-stage enamel of genetically distinct mice. Caries Res. 50, 24–31 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rangiani, A. et al. Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation. Int. J. Oral Sci. 4, 189–195 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Somogyi-Ganss, E. et al. Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis. Cells Tissues Organs 195, 535–549 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. FAM20C plays an essential role in the formation of murine teeth. J. Biol. Chem. 287, 35934–35942 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jagr, M. et al. Proteomic blockysis of dentin-enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur. J. Oral Sci. 127, 112–121 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleland, T. P., Schroeter, E. R. & Colleary, C. Diagenetiforms: a new term to explain protein changes as a result of diagenesis in paleoproteomics. J. Proteomics 230, 103992 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acevedo, A. C. et al. Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations. BMC Med. Genet. 16, 8 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peppe, D. et al. Geochronology and terrestrial paleoenvironments of the Middle Miocene hominoid fossil-bearing strata at Buluk, Turkana Basin, Kenya. Geological Society of America Abstracts with Programs 56, abstr. 219-2 (2024).

  • Lihoreau, F., Boisserie, J. R., Manthi, F. K. & Ducrocq, S. Hippos stem from the longest sequence of terrestrial cetartiodactyl evolution in Africa. Nat. Commun. 6, 6264 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orliac, M., Boisserie, J. R., Maclatchy, L. & Lihoreau, F. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin. Proc. Natl Acad. Sci. USA 107, 11871–11876 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleland, T. P., Schroeter, E. R., Feranec, R. S. & Vashishth, D. Peptide sequences from the first Castoroides ohioensis skull and the utility of old museum collections for palaeoproteomics. Proc. R. Soc. B 283, 20160593 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackie, M. et al. Palaeoproteomic profiling of conservation layers on a 14th century Italian wall painting. Angew. Chem. Int. Ed. 57, 7369–7374 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cleland, T. P., Schroeter, E. R. & Schweitzer, M. H. Biologically and diagenetically derived peptide modifications in moa collagens. Proc. R. Soc. B 282, 20150015 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schroeter, E. R. & Cleland, T. P. Glutamine deamidation: an indicator of antiquity, or preservational quality? Rapid Commun. M*** Spectrom. 30, 251–255 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, S. et al. Examining collagen preservation through glutamine deamidation at Denisova Cave. J. Archaeolog. Sci. 133, 105454 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakayama, Y., Holcroft, J. & Ganss, B. Enamel hypomineralization and structural defects in amelotin-deficient mice. J. Dent. Res. 94, 697–705 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turan, S. et al. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 46, 402–409 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleland, T. P. Human bone paleoproteomics utilizing the single-pot, solid-phase-enhanced sample preparation method to maximize detected proteins and reduce humics. J. Proteome Res. 17, 3976–3983 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moggridge, S., Sorensen, P. H., Morin, G. B. & Hughes, C. S. Extending the compatibility of the SP3 paramagnetic bead processing approach for proteomics. J. Proteome Res. 17, 1730–1740 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rüther, P. L. et al. SPIN enables high throughput species identification of archaeological bone by proteomics. Nat. Commun. 13, 2458 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *