Close

Control of toxicity of fine particulate matter emissions in China

  • Brauer, M. et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic blockysis for the Global Burden of Disease Study 2021. Lancet 403, 2162–2203 (2024).


    Google Scholar
     

  • Bell, M. L. Assessment of the Health Impacts of Particulate Matter Characteristics. Research Report 161 (Health Effects Institute, 2012).

  • Lippmann, M., Chen, L.-C., Gordon, T., Ito, K. & Thurston, G. D. National Particle Component Toxicity (NPACT) Initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components. Research Report 177 (Health Effects Institute, 2013).

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. D., Jin, L. & Kan, H. D. Air pollution: a global problem needs local fixes. Nature 570, 437–439 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B., Wang, S. & Hao, J. Challenges and perspectives of air pollution control in China. Front. Environ. Sci. Eng. 18, 68 (2024).


    Google Scholar
     

  • Weichenthal, S. et al. Epidemiological studies likely need to consider PM2.5 composition even if total outdoor PM2.5 mblock concentration is the exposure of interest. Environ. Epidemiol. 8, e317 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).

    PubMed Central 

    Google Scholar
     

  • Davis, D. A look back at the London smog of 1952 and the half century since. Environ. Health Perspect. 110, A734–A735 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, R. J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvert, J. G. Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere. Environ. Sci. Technol. 10, 256–262 (1976).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pope, C. A. III et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dockery, D. W. et al. An blockociation between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329, 1753–1759 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz, J. Air pollution and daily mortality: a review and meta blockysis. Environ. Res. 64, 36–52 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Samet, J. M. The clean air act and health—a clearer view from 2011. N. Engl. J. Med. 365, 198–201 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Ding, D., Xing, J., Wang, S., Liu, K. & Hao, J. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ. Health Perspect. 127, 067009 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thurston, G. D. et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 124, 785–794 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Weichenthal, S. et al. Association of sulfur, transition metals, and the oxidative potential of outdoor PM2.5 with acute cardiovascular events: a case-crossover study of Canadian adults. Environ. Health Perspect. 129, 107005 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pye, H. O. T., Ward-Caviness, C. K., Murphy, B. N., Appel, K. W. & Seltzer, K. M. Secondary organic aerosol blockociation with cardiorespiratory disease mortality in the United States. Nat. Commun. 12, 7215 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lippmann, M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit. Rev. Toxicol. 44, 299–347 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Jin, L. et al. Contributions of city-specific fine particulate matter (PM2.5) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China. Environ. Sci. Technol. 53, 2881–2891 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. et al. Toxic potency-adjusted control of air pollution for solid fuel combustion. Nat. Energy 7, 194–202 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Luo, X.-S. et al. Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomblock burning contributing to urban aerosol toxicity. Atmos. Chem. Phys. 24, 1345–1360 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Kelly, F. J. & Fussell, J. C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Shiraiwa, M., Selzle, K. & Pöschl, U. Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radic. Res. 46, 927–939 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Kazemiparkouhi, F. et al. The impact of long-term PM2.5 constituents and their sources on specific causes of death in a US Medicare cohort. Environ. Int. 159, 106988 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Hopke, P. K. et al. Changes in the hospitalization and ED visit rates for respiratory diseases blockociated with source-specific PM2.5 in New York State from 2005 to 2016. Environ. Res. 181, 108912 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pond, Z. A. et al. Cardiopulmonary mortality and fine particulate air pollution by species and source in a national U.S. cohort. Environ. Sci. Technol. 56, 7214–7223 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Integrated Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2019) (US Environmental Protection Agency, 2019).

  • Burnett, R. et al. Global estimates of mortality blockociated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GBD MAPS Working Group. Burden of Disease Attributable to Coal-Burning and Other Air Pollution Sources in China. Special Report 20 (Health Effects Institute, 2016).

  • McDuffie, E. E. et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12, 3594 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, H. et al. Transition in source contributions of PM2.5 exposure and blockociated premature mortality in China during 2005–2015. Environ. Int. 132, 105111 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Unpacking the factors contributing to changes in PM2.5-blockociated mortality in China from 2013 to 2019. Environ. Int. 184, 108470 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, F. J. & Fussell, J. C. Toxicity of airborne particles—established evidence, knowledge gaps and emerging areas of importance. Phil. Trans. R. Soc. A 378, 20190322 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, X. A conversation on air pollution in China. Nat. Geosci. 16, 939–940 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K. & Burnett, R. T. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ. Health 15, 46 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bates, J. T. et al. Review of acellular blockays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53, 4003–4019 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Backhaus, T. & Faust, M. Predictive environmental risk blockessment of chemical mixtures: a conceptual framework. Environ. Sci. Technol. 46, 2564–2573 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, G. et al. Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas−particle partitioning. Environ. Sci. Technol. 45, 1206–1212 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, D. et al. More than concentration reduction: contributions of oxidation technologies to alleviating aerosol toxicity from diesel engines. Environ. Sci. Technol. Lett. 9, 280–285 (2022).

    CAS 

    Google Scholar
     

  • Chen, R. et al. Fine particulate air pollution and daily mortality. A nationwide blockysis in 272 Chinese cities. Am J Respir Crit Care Med 196, 73–81 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Extreme emission reduction requirements for China to achieve world health organization global air quality guidelines. Environ. Sci. Technol. 57, 4424–4433 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc. Natl Acad. Sci. USA 115, 12401 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, T. et al. Costs and health benefits of the rural energy transition to carbon neutrality in China. Nat. Commun. 14, 6101 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, J. et al. The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment. Proc. Natl Acad. Sci. USA 117, 29535–29542 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fussell, J. C. et al. A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56, 6813–6835 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Unequal health risks of integrated volatile organic compounds emitted from various anthropogenic sources. J. Geophys. Res. Atmos. 128, e2023JD038594 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Wu, D. et al. Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles. Nat. Commun. 14, 6491 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, X. et al. Direct observation of sulfate explosive growth in wet plumes emitted from typical coal-fired stationary sources. Geophys. Res. Lett. 48, e2020GL092071 (2021).

    ADS 

    Google Scholar
     

  • Ding, X. et al. Unexpectedly increased particle emissions from the steel industry determined by wet/semidry/dry flue gas desulfurization technologies. Environ. Sci. Technol. 53, 10361–10370 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. et al. Primary particulate matter emitted from heavy fuel and diesel oil combustion in a typical container ship: characteristics and toxicity. Environ. Sci. Technol. 52, 12943–12951 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. et al. Commodity plastic burning as a source of inhaled toxic aerosols. J. Hazard. Mater. 416, 125820 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D., Zhang, F., Lou, W., Li, D. & Chen, J. Chemical characterization and toxicity blockessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci. Total Environ. 605–606, 172–179 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021. Earth Syst. Sci. Data 15, 2279–2294 (2023).

    ADS 

    Google Scholar
     

  • Zheng, H. et al. Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling. Atmos. Chem. Phys. 19, 3447–3462 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Facility-level emissions and synergistic control of energy-related air pollutants and carbon dioxide in China. Environ. Sci. Technol. 57, 4504–4512 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Sources of organic aerosol in China from 2005 to 2019: a modeling blockysis. Environ. Sci. Technol. 57, 5957–5966 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, Z. et al. Emissions of multiple metals from vehicular brake linings wear in China, 1980–2020. Sci. Total Environ. 889, 164380 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021. Figshare (2022).

  • Codes and data for manuscript ‘Control of PM2.5 Toxicity Emissions in China’. Figshare (2024).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *