Brauer, M. et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic blockysis for the Global Burden of Disease Study 2021. Lancet 403, 2162–2203 (2024).
Bell, M. L. Assessment of the Health Impacts of Particulate Matter Characteristics. Research Report 161 (Health Effects Institute, 2012).
Lippmann, M., Chen, L.-C., Gordon, T., Ito, K. & Thurston, G. D. National Particle Component Toxicity (NPACT) Initiative: Integrated Epidemiologic and Toxicologic Studies of the Health Effects of Particulate Matter Components. Research Report 177 (Health Effects Institute, 2013).
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).
Li, X. D., Jin, L. & Kan, H. D. Air pollution: a global problem needs local fixes. Nature 570, 437–439 (2019).
Zhao, B., Wang, S. & Hao, J. Challenges and perspectives of air pollution control in China. Front. Environ. Sci. Eng. 18, 68 (2024).
Weichenthal, S. et al. Epidemiological studies likely need to consider PM2.5 composition even if total outdoor PM2.5 mblock concentration is the exposure of interest. Environ. Epidemiol. 8, e317 (2024).
Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).
Davis, D. A look back at the London smog of 1952 and the half century since. Environ. Health Perspect. 110, A734–A735 (2002).
Huang, R. J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).
Calvert, J. G. Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere. Environ. Sci. Technol. 10, 256–262 (1976).
Pope, C. A. III et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141 (2002).
Dockery, D. W. et al. An blockociation between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329, 1753–1759 (1993).
Schwartz, J. Air pollution and daily mortality: a review and meta blockysis. Environ. Res. 64, 36–52 (1994).
Samet, J. M. The clean air act and health—a clearer view from 2011. N. Engl. J. Med. 365, 198–201 (2011).
Ding, D., Xing, J., Wang, S., Liu, K. & Hao, J. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ. Health Perspect. 127, 067009 (2019).
Thurston, G. D. et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 124, 785–794 (2016).
Weichenthal, S. et al. Association of sulfur, transition metals, and the oxidative potential of outdoor PM2.5 with acute cardiovascular events: a case-crossover study of Canadian adults. Environ. Health Perspect. 129, 107005 (2021).
Pye, H. O. T., Ward-Caviness, C. K., Murphy, B. N., Appel, K. W. & Seltzer, K. M. Secondary organic aerosol blockociation with cardiorespiratory disease mortality in the United States. Nat. Commun. 12, 7215 (2021).
Lippmann, M. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit. Rev. Toxicol. 44, 299–347 (2014).
Jin, L. et al. Contributions of city-specific fine particulate matter (PM2.5) to differential in vitro oxidative stress and toxicity implications between Beijing and Guangzhou of China. Environ. Sci. Technol. 53, 2881–2891 (2019).
Wu, D. et al. Toxic potency-adjusted control of air pollution for solid fuel combustion. Nat. Energy 7, 194–202 (2022).
Luo, X.-S. et al. Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomblock burning contributing to urban aerosol toxicity. Atmos. Chem. Phys. 24, 1345–1360 (2024).
Kelly, F. J. & Fussell, J. C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526 (2012).
Shiraiwa, M., Selzle, K. & Pöschl, U. Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radic. Res. 46, 927–939 (2012).
Kazemiparkouhi, F. et al. The impact of long-term PM2.5 constituents and their sources on specific causes of death in a US Medicare cohort. Environ. Int. 159, 106988 (2022).
Hopke, P. K. et al. Changes in the hospitalization and ED visit rates for respiratory diseases blockociated with source-specific PM2.5 in New York State from 2005 to 2016. Environ. Res. 181, 108912 (2020).
Pond, Z. A. et al. Cardiopulmonary mortality and fine particulate air pollution by species and source in a national U.S. cohort. Environ. Sci. Technol. 56, 7214–7223 (2022).
Integrated Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2019) (US Environmental Protection Agency, 2019).
Burnett, R. et al. Global estimates of mortality blockociated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).
GBD MAPS Working Group. Burden of Disease Attributable to Coal-Burning and Other Air Pollution Sources in China. Special Report 20 (Health Effects Institute, 2016).
McDuffie, E. E. et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12, 3594 (2021).
Zheng, H. et al. Transition in source contributions of PM2.5 exposure and blockociated premature mortality in China during 2005–2015. Environ. Int. 132, 105111 (2019).
Zheng, H. et al. Unpacking the factors contributing to changes in PM2.5-blockociated mortality in China from 2013 to 2019. Environ. Int. 184, 108470 (2024).
Kelly, F. J. & Fussell, J. C. Toxicity of airborne particles—established evidence, knowledge gaps and emerging areas of importance. Phil. Trans. R. Soc. A 378, 20190322 (2020).
Jiang, X. A conversation on air pollution in China. Nat. Geosci. 16, 939–940 (2023).
Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K. & Burnett, R. T. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM2.5 oxidative potential: a case-crossover study. Environ. Health 15, 46 (2016).
Bates, J. T. et al. Review of acellular blockays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53, 4003–4019 (2019).
Backhaus, T. & Faust, M. Predictive environmental risk blockessment of chemical mixtures: a conceptual framework. Environ. Sci. Technol. 46, 2564–2573 (2012).
Shen, G. et al. Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas−particle partitioning. Environ. Sci. Technol. 45, 1206–1212 (2011).
Wu, D. et al. More than concentration reduction: contributions of oxidation technologies to alleviating aerosol toxicity from diesel engines. Environ. Sci. Technol. Lett. 9, 280–285 (2022).
Chen, R. et al. Fine particulate air pollution and daily mortality. A nationwide blockysis in 272 Chinese cities. Am J Respir Crit Care Med 196, 73–81 (2017).
Jiang, Y. et al. Extreme emission reduction requirements for China to achieve world health organization global air quality guidelines. Environ. Sci. Technol. 57, 4424–4433 (2023).
Zhao, B. et al. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc. Natl Acad. Sci. USA 115, 12401 (2018).
Ma, T. et al. Costs and health benefits of the rural energy transition to carbon neutrality in China. Nat. Commun. 14, 6101 (2023).
Xing, J. et al. The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment. Proc. Natl Acad. Sci. USA 117, 29535–29542 (2020).
Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).
Fussell, J. C. et al. A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56, 6813–6835 (2022).
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
Liu, Y. et al. Unequal health risks of integrated volatile organic compounds emitted from various anthropogenic sources. J. Geophys. Res. Atmos. 128, e2023JD038594 (2023).
Wu, D. et al. Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles. Nat. Commun. 14, 6491 (2023).
Ding, X. et al. Direct observation of sulfate explosive growth in wet plumes emitted from typical coal-fired stationary sources. Geophys. Res. Lett. 48, e2020GL092071 (2021).
Ding, X. et al. Unexpectedly increased particle emissions from the steel industry determined by wet/semidry/dry flue gas desulfurization technologies. Environ. Sci. Technol. 53, 10361–10370 (2019).
Wu, D. et al. Primary particulate matter emitted from heavy fuel and diesel oil combustion in a typical container ship: characteristics and toxicity. Environ. Sci. Technol. 52, 12943–12951 (2018).
Wu, D. et al. Commodity plastic burning as a source of inhaled toxic aerosols. J. Hazard. Mater. 416, 125820 (2021).
Wu, D., Zhang, F., Lou, W., Li, D. & Chen, J. Chemical characterization and toxicity blockessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci. Total Environ. 605–606, 172–179 (2017).
Li, S. et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021. Earth Syst. Sci. Data 15, 2279–2294 (2023).
Zheng, H. et al. Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling. Atmos. Chem. Phys. 19, 3447–3462 (2019).
Wu, Q. et al. Facility-level emissions and synergistic control of energy-related air pollutants and carbon dioxide in China. Environ. Sci. Technol. 57, 4504–4512 (2023).
Zheng, H. et al. Sources of organic aerosol in China from 2005 to 2019: a modeling blockysis. Environ. Sci. Technol. 57, 5957–5966 (2023).
Fu, Z. et al. Emissions of multiple metals from vehicular brake linings wear in China, 1980–2020. Sci. Total Environ. 889, 164380 (2023).
Li, S. et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021. Figshare (2022).
Codes and data for manuscript ‘Control of PM2.5 Toxicity Emissions in China’. Figshare (2024).