Complex genetic variation in nearly complete human genomes

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Porubsky, D. et al. Gaps and complex structurally variant loci in phased genome ***emblies. Genome Res. 33, 496–510 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ebler, J. et al. Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant cl***es. Nat. Genet. 54, 518–525 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garg, S. et al. Chromosome-scale, haplotype-resolved ***embly of human genomes. Nat. Biotechnol. (2020).

  • Porubsky, D. et al. Fully phased human genome ***embly without parental data using single-cell strand sequencing and long reads. Nat. Biotechnol. (2020).

  • Koren, S. et al. De novo ***embly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

    CAS 

    Google Scholar
     

  • Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated blockysis of structural variation. Science 372, eabf7117 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rautiainen, M. et al. Telomere-to-telomere ***embly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere ***embly for diploid and polyploid genomes with double graph. Nat. Methods 21, 967–970 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 1000 Genomes Project Consortiumet al. A global reference for human genetic variation. Nature 526, 68–74 (2015).


    Google Scholar
     

  • Henglin, M. et al. Graphasing: phasing diploid genome ***embly graphs with single-cell strand sequencing. Genome Biol. 25, 265 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aganezov, S. et al. A complete reference genome improves blockysis of human genetic variation. Science 376, eabl3533 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kazazian, H. H. Jr et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Porubsky, D. et al. Recurrent inversion polymorphisms in humans ***ociate with genetic instability and genomic disorders. Cell 185, 1986–2005.e26 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jeong, H. et al. Structural polymorphism and diversity of human segmental duplications. Nat. Genet. 57, 390–401 (2025).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hallast, P., Agdzhoyan, A., Balanovsky, O., Xue, Y. & Tyler-Smith, C. A Southeast Asian origin for present-day non-African human Y chromosomes. Hum. Genet.140, 299–307 (2021).

    PubMed 
    CAS 

    Google Scholar
     

  • Hallast, P. et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature 621, 355–364 (2023).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344–354 (2023).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 643, 427–436 (2025).

  • Ruderfer, D. M. et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat. Genet. 48, 1107–1111 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 185, 3426–3440.e19 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Prodanov, T. et al. Locityper: targeted genotyping of complex polymorphic genes. Preprint at bioRxiv (2024).

  • Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 40, 672–680 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).

    PubMed 
    CAS 

    Google Scholar
     

  • Norman, P. J. et al. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA cl*** I and II. Genome Res. 27, 813–823 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abi-Rached, L. et al. Immune diversity sheds light on missing variation in worldwide genetic diversity panels. PLoS ONE 13, e0206512 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker, D. J. et al. The IPD-IMGT/HLA Database. Nucleic Acids Res. 51, D1053–D1060 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Mentzer, A. J. et al. High-resolution African HLA resource uncovers HLA-DRB1 expression effects underlying vaccine response. Nat. Med. 30, 1384–1394 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, B., Shao, Y. & Fu, R. Current research status of HLA in immune-related diseases. Immun. Inflamm. Dis. 9, 340–350 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Horton, R. et al. Variation blockysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics 60, 1–18 (2008).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Houwaart, T. et al. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC cl*** II structures. Hladnikia 102, 28–43 (2023).

    CAS 

    Google Scholar
     

  • Gorski, J. The HLA-DRw8 lineage was generated by a deletion in the DR B region followed by first domain diversification. J. Immunol. 142, 4041–4045 (1989).

    PubMed 
    CAS 

    Google Scholar
     

  • Gongora, R. Presence of solitary exon 1 sequences in the HLA-DR region. Hereditas 127, 47–49 (1997).

    PubMed 
    CAS 

    Google Scholar
     

  • Chung, E. K. et al. Genetic sophistication of human complement components C4A and C4B and RP-C4-CYP21-TNX (RCCX) modules in the major histocompatibility complex. Am. J. Hum. Genet. 71, 823–837 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bánlaki, Z. et al. Intraspecific evolution of human RCCX copy number variation traced by haplotypes of the CYP21A2 gene. Genome Biol. Evol. 5, 98–112 (2013).

    PubMed 

    Google Scholar
     

  • Chin, C.-S. et al. Multiscale blockysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat. Methods 20, 1213–1221 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gu, S. et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum. Mol. Genet. 24, 4061–4077 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Balachandran, P. et al. Transposable element-mediated rearrangements are prevalent in human genomes. Nat. Commun. 13, 7115 (2022).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Beck, C. R. et al. Megabase length hypermutation accompanies human structural variation at 17p11.2. Cell 176, 1310–1324.e10 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Audano, P. A., Paisie, C., The Human Genome Structural Variation Consortium & Beck, C. R. Large complex structural rearrangements in human genomes harbor cryptic structures. Preprint at bioRxiv (2024).

  • Collins, R. L. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol. 18, 36 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques-Bonet, T. & Eichler, E. E. The evolution of human segmental duplications and the core duplicon hypothesis. Cold Spring Harb. Symp. Quant. Biol. 74, 355–362 (2009).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Winkelsas, A. M. et al. Targeting the 5′ untranslated region of SMN2 as a therapeutic strategy for spinal muscular atrophy. Mol. Ther. Nucleic Acids 23, 731–742 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sivanesan, S., Howell, M. D., Didonato, C. J. & Singh, R. N. Antisense oligonucleotide mediated therapy of spinal muscular atrophy. Transl. Neurosci. (2013).

  • Bolognini, D. et al. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature (2024).

  • Yilmaz, F. et al. Reconstruction of the human amylase locus reveals ancient duplications seeding modern-day variation. Science 386, eadn0609 (2024).

    PubMed 
    CAS 

    Google Scholar
     

  • Usher, C. L. et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat. Genet. 47, 921–925 (2015).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Shepelev, V. A., Alexandrov, A. A., Yurov, Y. B. & Alexandrov, I. A. The evolutionary origin of man can be traced in the layers of defunct ancestral alpha satellites flanking the active centromeres of human chromosomes. PLOS Genet. 5, e1000641 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, R. J., O’Neill, M. J. & Graves, J. A. Undermethylation ***ociated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 (1998).

    ADS 
    PubMed 

    Google Scholar
     

  • Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. A pangenome reference of 36 Chinese populations. Nature 619, 112–121 (2023).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schloissnig, S. et al. Structural variation in 1,019 diverse humans based on long-read sequencing Nature (2024).

  • International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).


    Google Scholar
     

  • Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data 3, 160025 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C. J. & Lansdorp, P. M. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc. 12, 1151–1176 (2017).

    PubMed 
    CAS 

    Google Scholar
     

  • Falconer, E. et al. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat. Methods 9, 1107–1112 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Astashyn, A. et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol. 25, 60 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing ***essment for genome ***emblies. Genome Biol. 21, 245 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vollger, M. R. et al. Long-read sequence and ***embly of segmental duplications. Nat. Methods 16, 88–94 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Chen, Y., Zhang, Y., Wang, A. Y., Gao, M. & Chong, Z. Accurate long-read de novo ***embly evaluation with Inspector. Genome Biol. 22, 312 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    PubMed 
    CAS 

    Google Scholar
     

  • Huang, N. & Li, H. compleasm: A faster and more accurate reimplementation of BUSCO. Bioinformatics 39, btad595 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jain, C., Koren, S., Dilthey, A., Phillippy, A. M. & Aluru, S. A fast adaptive algorithm for computing whole-genome homology maps. Bioinformatics 34, i748–i756 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ren, J. & Chaisson, M. J. P. lra: a long read aligner for sequences and contigs. PLoS Comput Biol. 17, e1009078 (2021).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15, 595–597 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heller, D. & Vingron, M. SVIM-asm: structural variant detection from haploid and diploid genome ***emblies. Bioinformatics 36, 5519–5521 (2021).

    PubMed 

    Google Scholar
     

  • Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read blockysis. Bioinformatics 28, i333–i339 (2012).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak. Nat. Commun. 14, 283 (2023).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Nat. Comput. Sci. 2, 797–803 (2022).

    PubMed 

    Google Scholar
     

  • Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (Institute for Systems Biology, 2013).

  • Storer, J., Hubley, R., Rosen, J., Wheeler, T. J. & Smit, A. F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA 12, 2 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gros, C., Sanders, A. D., Korbel, J. O., Marschall, T. & Ebert, P. ASHLEYS: automated quality control for single-cell Strand-seq data. Bioinformatics 37, 3356–3357 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Höps, W. et al. Impact and characterization of serial structural variations across humans and great apes. Nat. Commun. 15, 8007 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porubsky, D. et al. Inversion polymorphism in a complete human genome ***embly. Genome Biol. 24, 100 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Numanagic, I. et al. Fast characterization of segmental duplications in genome ***emblies. Bioinformatics 34, i706–i714 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Benson, G. Tandem repeats finder: a program to blockyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics (2009).

  • Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22, 134–141 (2006).

    PubMed 
    CAS 

    Google Scholar
     

  • Pendleton, A. L. et al. Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication. BMC Biol. 16, 64 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028 (2007).

    PubMed 
    CAS 

    Google Scholar
     

  • Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Lee, B. T. et al. The UCSC Genome Browser database: 2022 update. Nucleic Acids Res. 50, D1115–D1122 (2022).

    PubMed 
    CAS 

    Google Scholar
     

  • Lindeboom, R. G. H., Supek, F. & Lehner, B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat. Genet. 48, 1112–1118 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pardo-Palacios, F. J. et al. SQANTI3: curation of long-read transcriptomes for accurate identification of known and novel isoforms. Nat. Methods 21, 793–797 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26 (2011).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    PubMed 

    Google Scholar
     

  • Pertea, M. et al. CHESS: a new human gene catalog curated from thousands of large-scale RNA sequencing experiments reveals extensive transcriptional noise. Genome Biol. 19, 208 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • ENCODE Project Consortiumet al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    ADS 

    Google Scholar
     

  • Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    PubMed 
    CAS 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome ***ociation and population-based linkage blockyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hickey, G. et al. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 42, 663–673 (2024).

    PubMed 
    CAS 

    Google Scholar
     

  • Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Audano, P., Christine, B. & Human Genome Structural Variation Consortium. A method for calling complex SVs. Zenodo (2024).

  • Bellman, R. On a routing problem. Quart. Appl. Math. 16, 87–90 (1958).

    MathSciNet 

    Google Scholar
     

  • Yoo, D. et al. Complete sequencing of ape genomes. Nature 641, 401–418 (2025).

  • Prodanov, T. & Bansal, V. Robust and accurate estimation of paralog-specific copy number for duplicated genes using whole-genome sequencing. Nat. Commun. 13, 3221 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet. Med. 22, 945–953 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li, H. Identifying centromeric satellites with dna-brnn. Bioinformatics 35, 4408–4410 (2019).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  • McNulty, S. M. & Sullivan, B. A. Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res. 26, 115–138 (2018).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGl***: interactive visualization of m***ive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mastrorosa, F. K. et al. Identification and annotation of centromeric hypomethylated regions with CDR-Finder. Bioinformatics 40, btae733 (2024).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ebert, P. hgsvc/phase3-main-pub: v1.1 HGSVC phase 3 revision stage/ZENODO (v1.1). Zenodo (2024).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *