Close

Attosecond inner-shell lasing at ångström wavelengths

  • Hercher, M. Laser-induced damage in transparent media. J. Opt. Soc. Am. 54, 563 (1964).


    Google Scholar
     

  • Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gray, H. R., Whitley, R. M. & Stroud, C. R. J. Coherent trapping of atomic populations. Opt. Lett. 3, 218–220 (1978).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonifacio, R. & Lugiato, L. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Boyd, R. W., Gaeta, A. L. & Giese, E. in Springer Handbook of Atomic, Molecular, and Optical Physics (ed. Drake, G.) 1097–1110 (Springer, 2008).

  • Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chin, S. L. Femtosecond Laser Filamentation, Vol. 55 (Springer, 2010).

  • Ready, J. F. Industrial Applications of Lasers (Elsevier, 1997).

  • Chergui, M., Beye, M., Mukamel, S., Svetina, C. & Masciovecchio, C. Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy. Nat. Rev. Phys. 5, 578–596 (2023).

    Article 

    Google Scholar
     

  • Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoneda, H. et al. Atomic inner-shell laser at 1.5-ångström wavelength pumped by an X-ray free-electron laser. Nature 524, 446–449 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroll, T. et al. Stimulated X-ray emission spectroscopy in transition metal complexes. Phys. Rev. Lett. 120, 133203 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroll, T. et al. Observation of seeded Mn Kβ stimulated X-ray emission using two-color X-ray free-electron laser pulses. Phys. Rev. Lett. 125, 037404 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, M. D. et al. Seeded stimulated X-ray emission at 5.9 keV. Optica 10, 513–519 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Generation of intense phase-stable femtosecond hard X-ray pulse pairs. Proc. Natl Acad. Sci. USA 119, e2119616119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halavanau, A. et al. Population inversion X-ray laser oscillator. Proc. Natl Acad. Sci. USA 117, 15511–15516 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuchurka, S., Benediktovitch, A., Krušič, Š., Halavanau, A. & Rohringer, N. Stochastic modeling of x-ray superfluorescence. Phys. Rev. A 109, 033725 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qi, P. et al. Sensing with femtosecond laser filamentation. Sensors 22, 7076 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, Y., Oh, S.-W. & Han, S.-H. Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water. Appl. Spectrosc. 66, 1385–1396 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chin, S. L. et al. Advances in intense femtosecond laser filamentation in air. Laser Phys. 22, 1–53 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Young, L. et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466, 56–61 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoener, M. et al. Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cryan, J. P. et al. Auger electron angular distribution of double core-hole states in the molecular reference frame. Phys. Rev. Lett. 105, 083004 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fang, L. et al. Double core-hole production in N2: beating the Auger clock. Phys. Rev. Lett. 105, 083005 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berrah, N. et al. Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser. Proc. Natl Acad. Sci. USA 108, 16912–16915 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doumy, G. et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudek, B. et al. Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nat. Photon. 6, 858–865 (2012).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Glover, T. E. et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shwartz, S. et al. X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S., Ding, Y., Huang, Z. & Qiang, J. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression. Phys. Rev. Accel. Beams 17, 120703 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ding Y. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers. In Proc. SPIE 9512, Advances in X-ray Free-Electron Lasers Instrumentation III, Vol. 95121B (SPIE, 2015).

  • Li, S. et al. Characterizing isolated attosecond pulses with angular streaking. Opt. Express 26, 4531–4547 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Li, S. et al. Attosecond coherent electron motion in Auger-Meitner decay. Science 375, 285–290 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Z. et al. Experimental demonstration of attosecond pump–probe spectroscopy with an X-ray free-electron laser. Nat. Photon. 18, 691–697 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Franz, P. et al. Terawatt-scale attosecond X-ray pulses from a cascaded superradiant free-electron laser. Nat. Photon. 18, 698–703 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Driver, T. et al. Attosecond delays in X-ray molecular ionization. Nature 632, 762–767 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, J. et al. Terawatt-attosecond hard X-ray free-electron laser at high repetition rate. Nat. Photon. 18, 1293–1298 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bergmann, U. Stimulated X-ray emission spectroscopy. Photosynth. Res. 162, 371–384 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercadier, L. et al. Evidence of extreme ultraviolet superfluorescence in xenon. Phys. Rev. Lett. 123, 023201 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Benediktovitch, A. et al. Amplified spontaneous emission in the extreme ultraviolet by expanding xenon clusters. Phys. Rev. A 101, 063412 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nandi, S. et al. Observation of Rabi dynamics with a short-wavelength free-electron laser. Nature 608, 488–493 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Autler, S. H. & Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Krušič, Š., Mihelič, A., Bučar, K. & Žitnik, M. Self-induced splitting of x-ray emission lines. Phys. Rev. A 102, 013102 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Linker, T. et al. Data for attosecond inner shell lasing at angstrom wavelenghts. Zenodo (2025).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *