Close

An instantaneous voice-synthesis neuroprosthesis | Nature

  • Card, N. S. et al. An accurate and rapidly calibrating speech neuroprosthesis. N. Engl. J. Med. 391, 609–618 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willett, F. R. et al. A high-performance speech neuroprosthesis. Nature 620, 1031–1036 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620, 1037–1046 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, A. B., Littlejohn, K. T., Liu, J. R., Moses, D. A. & Chang, E. F. The speech neuroprosthesis. Nat. Rev. Neurosci. 25, 473–492 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herff, C. et al. Generating natural, intelligible speech from brain activity in motor, premotor, and inferior frontal cortices. Front. Neurosci. 13, 1267 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angrick, M. et al. Speech synthesis from ECoG using densely connected 3D convolutional neural networks. J. Neural Eng. 16, 036019 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, K. et al. Continuous synthesis of artificial speech sounds from human cortical surface recordings during silent speech production. J. Neural Eng. 20, 046019 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Le Godais, G. et al. Overt speech decoding from cortical activity: a comparison of different linear methods. Front. Hum. Neurosci. 17, 1124065 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Decoding and synthesizing tonal language speech from brain activity. Sci. Adv. 9, eadh0478 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berezutskaya, J. et al. Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models. J. Neural Eng. 20, 056010 (2023).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Shigemi, K. et al. Synthesizing speech from ECoG with a combination of transformer-based encoder and neural vocoder. In ICASSP 2023 – 2023 IEEE Int. Conf. Acoust. Speech Signal Process. 1–5 (IEEE, 2023).

  • Chen, X. et al. A neural speech decoding framework leveraging deep learning and speech synthesis. Nat. Mach. Intell. 6, 467–480 (2024).

    Article 

    Google Scholar
     

  • Wilson, G. H. et al. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. J. Neural Eng. 17, 066007 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wairagkar, M., Hochberg, L. R., Brandman, D. M. & Stavisky, S. D. Synthesizing speech by decoding intracortical neural activity from dorsal motor cortex. In 2023 11th Int. IEEE/EMBS Conf. on Neural Eng. (NER) 1–4 (IEEE, 2023).

  • Angrick, M. et al. Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity. Commun. Biol. 4, 1055 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X., Wellington, S., Fu, Z. & Zhang, D. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods. J. Neural Eng. 21, 036055 (2024).

    Article 

    Google Scholar
     

  • Angrick, M. et al. Online speech synthesis using a chronically implanted brain–computer interface in an individual with ALS. Sci. Rep. 14, 9617 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS, 2017).

  • Downey, J. E., Schwed, N., Chase, S. M., Schwartz, A. B. & Collinger, J. L. Intracortical recording stability in human brain–computer interface users. J. Neural Eng. 15, 046016 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Valin, J.-M. & Skoglund, J. LPCNET: improving neural speech synthesis through linear prediction. In ICASSP 2019 – 2019 IEEE Int. Conf. on Acoust. Speech Signal Process. 5891–5895 (IEEE, 2019).

  • Li, Y. A., Han, C., Raghavan, V. S., Mischler, G. & Mesgarani, N. StyleTTS 2: towards human-level text-to-speech through style diffusion and adversarial training with large speech language models. Adv. Neural Inf. Process. Syst. 36, 19594–19621 (2023).

  • Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The control of vocal pitch in human laryngeal motor cortex. Cell 174, 21–31 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions. Neuron 95, 195–208 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churchland, M. M. & Shenoy, K. V. Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunz, E. M. et al. Representation of verbal thought in motor cortex and implications for speech neuroprostheses. Preprint at bioRxiv (2024).

  • Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Neural control of lexical tone production in human laryngeal motor cortex. Nat. Commun. 14, 6917 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breshears, J. D., Molinaro, A. M. & Chang, E. F. A probabilistic map of the human ventral sensorimotor cortex using electrical stimulation. J. Neurosurg. 123, 340–349 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ammanuel, S. G. et al. Intraoperative cortical stimulation mapping with laryngeal electromyography for the localization of human laryngeal motor cortex. J. Neurosurg. 141, 268–277 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Pandarinath, C. et al. Neural population dynamics in human motor cortex during movements in people with ALS. eLife 4, e07436 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavisky, S. D. et al. Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. eLife 8, e46015 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 396–409 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, Y. H. et al. BRAND: a platform for closed-loop experiments with deep network models. J. Neural Eng. 21, 026046 (2024).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Young, D. et al. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation. J. Neural Eng. 15, 026014 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levelt, W. J., Roelofs, A. & Meyer, A. S. A theory of lexical access in speech production. Behav. Brain Sci. 22, 1–38 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Räsänen, O., Doyle, G. & Frank, M. C. Unsupervised word discovery from speech using automatic segmentation into syllable-like units. Proc. Interspeech 2015, 3204–3208 (2015).


    Google Scholar
     

  • Williams, A. H. et al. Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping. Neuron 105, 246–259 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roussel, P. et al. Observation and assessment of acoustic contamination of electrophysiological brain signals during speech production and sound perception. J. Neural Eng. 17, 056028 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shah, N., Sahipjohn, N., Tambrahalli, V., Subramanian, R. & Gandhi, V. StethoSpeech: speech generation through a clinical stethoscope attached to the skin. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 123 (2024).

    Article 

    Google Scholar
     

  • Wairagkar, M. et al. Data for an instantaneous voice synthesis neuroprosthesis. Dryad (2025).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *