Close

A single-cell multi-omics atlas of rice

  • de la Torre-Ubieta, L. et al. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172, 289–304.e18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, J. R. et al. Topological domains in mammalian genomes identified by ***ysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillotin, B. et al. A pan-grblock transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785–791 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Transcriptional landscape of rice roots at the single-cell resolution. Mol. Plant 14, 384–394 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Z. M. et al. Single-cell RNA-seq of Lotus japonicus provide insights into identification and function of root cell types of legume. J. Integr. Plant Biol. 65, 1147–1152 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, D. et al. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips. BMC Biol. 20, 274 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marand, A. P., Chen, Z. L., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorrity, M. W. et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun. 12, 3334 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farmer, A., Thibivilliers, S., Ryu, K. H., Schiefelbein, J. & Libault, M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 14, 372–383 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. H., Han, S. J., Yoon, E. K. & Lee, W. S. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res. 34, 1892–1899 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, F. F. & Xue, H. W. Coexpression ***ysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 154, 927–938 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol. 58, 863–873 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nunes-Nesi, A., Fernie, A. R. & Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant 3, 973–996 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods 3, 100498 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, Z. Y. et al. The OsmiR396–OsGRF8–OsF3H–flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol. J. 17, 1657–1669 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, K. et al. Superoxide, hydrogen peroxide and hydroxyl radical in D1/D2/cytochrome b-559 photosystem II reaction center complex. Photosynth. Res. 81, 41–47 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376, 1293–1300 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Genome-wide blockociation studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, X. et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat. Genet. 53, 243–253 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, J. et al. Comparative ***ysis on grain quality and yield of different panicle weight indicajaponica hybrid rice (Oryza sativa L.) cultivars. J. Integr. Agr. 19, 999–1009 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ren, D., Ding, C. & Qian, Q. Molecular bases of rice grain size and quality for optimized productivity. Sci. Bull. 68, 314–350 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zong, J. et al. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytol. 234, 494–512 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol. 149, 916–928 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, P. et al. MADS78 and MADS79 are essential regulators of early seed development in rice. Plant Physiol. 182, 933–948 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, Z., Brown, R. C., Fletcher, J. C. & Opsahl-Sorteberg, H. G. Calpain-mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development. Plant Cell Physiol. 56, 1855–1866 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busch, F. A. Photosynthetic gas exchange in land plants at the leaf level. Methods Mol. Biol. 1770, 25–44 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, K. et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Triantaphylidès, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Q. et al. RNA demethylation increases the yield and biomblock of rice and potato plants in field trials. Nat. Biotechnol. 39, 1581–1588 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleming, S. J. et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat. Methods 20, 1323–1335 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. Doubletfinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state ***ysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, J. et al. Planttfdb 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G. & He, Q. Y. Chipseeker: an R/Bioconductor package for Chip peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. et al. Multi-omics ***ysis for transcriptional regulation of immune-related targets using epigenetic data: a new research direction. Front. Immunol. 12, 741634 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleino, I., Frolovaitė, P., Suomi, T. & Elo, L. L. Computational solutions for spatial transcriptomics. Comput. Struct. Biotechnol. J. 20, 4870–4884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, D. dongwei-2023/Rice-root-cell-type-prediction-tool: v1.0 (v1.0). Zenodo (2025).

  • Wei, D. dongwei-2023/Single_cell_multiomics_in_rice: v1.0 (v1.0). Zenodo (2025).

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *