Bohra, A. et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412–431 (2022).
Haas, M. & Mascher, M. Use of the secondary gene pool of barley in breeding improved varieties. Burleigh Dodds Chapters Online (2019).
Frankel, O. H. Genetic conservation: our evolutionary responsibility. Genetics 78, 53–65 (1974).
Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).
Hardigan, M. A. et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl Acad. Sci. USA 114, E9999–E10008 (2017).
Martin, G. et al. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 102, 1008–1025 (2020).
Harlan, J. R. & de Wet, J. M. J. Toward a rational clblockification of cultivated plants. Taxon 20, 509–517 (1971).
Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).
Przewieslik-Allen, A. M. et al. The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 7, 172–183 (2021).
Brblockac, J. & Blattner, F. R. Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst. Biol. 64, 792–808 (2015).
Jörgensen, R. B. Biosystematics of Hordeum bulbosum L. Nord. J. Bot. 2, 421–434 (1982).
Blattner, F. R. et al. An area-resolved phylogeography of bulbous barley (Hordeum bulbosum; Poaceae). Preprint at bioRxiv (2025).
Johnston, P. A., Timmerman-Vaughan, G. M., Farnden, K. J. F. & Pickering, R. Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor. Appl. Genet. 118, 1429–1437 (2009).
Walther, U., Rapke, H., Proeseler, G. & Szigat, G. Hordeum bulbosum-a new source of disease resistance-transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119, 215–218 (2000).
Wendler, N. et al. Bulbosum to go: a toolbox to utilize Hordeum ***e/bulbosum introgressions for breeding and beyond. Mol. Plant 8, 1507–1519 (2015).
Hoseinzadeh, P., Ruge-Wehling, B., Schweizer, P., Stein, N. & Pidon, H. High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front. Plant Sci. 11, 225 (2020).
Pidon, H. et al. High-resolution mapping of Rym14Hb, a wild relative resistance gene to barley yellow mosaic disease. Theor. Appl. Genet. 134, 823–833 (2021).
Jayakodi, M., Schreiber, M., Stein, N. & Mascher, M. Building pan-genome infrastructures for crop plants and their use in blockociation genetics. DNA Res. 28, dsaa030 (2021).
Jayakodi, M. et al. Structural variation in the pangenome of wild and domesticated barley. Nature 636, 654–662 (2024).
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and blockembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).
Padmarasu, S., Himmelbach, A., Mascher, M. & Stein, N. In situ Hi-C for plants: an improved method to detect long-range chromatin interactions. Methods Mol. Biol. 1933, 441–472 (2019).
Dreissig, S., Fuchs, J., Himmelbach, A., Mascher, M. & Houben, A. Sequencing of single pollen nuclei reveals meiotic recombination events at megabase resolution and cir***vents segregation distortion caused by postmeiotic processes. Front. Plant Sci. 8, 1620 (2017).
Braz, G. T. et al. Comparative Oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208, 513–523 (2018).
Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020).
Igolkina, A. A. et al. Towards an unbiased characterization of genetic polymorphism. Preprint at bioRxiv (2024).
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).
Vicient, C. M. et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769–1784 (1999).
Wang, Z. et al. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat. Commun. 13, 3891 (2022).
Mather, N., Traves, S. M. & Ho, S. Y. W. A practical introduction to sequentially Markovian coalescent methods for estimating demographic history from genomic data. Ecol. Evol. 10, 579–589 (2020).
Gblocke, F., Téhet, R., Durand, A., Gibert, E. & Fontes, J.-C. The arid–humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346, 141–146 (1990).
Mascher, M. et al. Long-read sequence blockembly: a technical evaluation in barley. Plant Cell 33, 1888–1906 (2021).
Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).
Büschges, R. et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705 (1997).
Nancarrow, N., Aftab, M., Hollaway, G., Rodoni, B. & Trębicki, P. Yield losses caused by barley yellow dwarf virus-PAV infection in wheat and barley: a three-year field study in South-Eastern Australia. Microorganisms 9, 645 (2021).
Pidon, H. et al. High-resolution mapping of Ryd4Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. Theor. Appl. Genet. 137, 60 (2024).
Jost, M., Singh, D., Lagudah, E., Park, R. F. & Dracatos, P. Fine mapping of leaf rust resistance gene Rph13 from wild barley. Theor. Appl. Genet. 133, 1887–1895 (2020).
Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).
Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25, 148–158 (2019).
Zhou, Y. et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527–534 (2022).
Sun, H. et al. Chromosome-scale and haplotype-resolved genome blockembly of a tetraploid potato cultivar. Nat. Genet. 54, 342–348 (2022).
Jakob, S. S., Meister, A. & Blattner, F. R. The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol. Biol. Evol. 21, 860–869 (2004).
Dvorak, J., McGuire, P. E. & Cblockidy, B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30, 680–689 (1988).
Himmelbach, A., Walde, I., Mascher, M. & Stein, N. Tethered chromosome conformation capture sequencing in Triticeae: a valuable tool for genome blockembly. Bio-protocol 8, e2955 (2018).
Himmelbach, A. et al. Discovery of multi‐megabase polymorphic inversions by chromosome conformation capture sequencing in large‐genome plant species. Plant J. 96, 1309–1316 (2018).
Wendler, N. et al. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122–1131 (2014).
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo blockembly using phased blockembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
Marone, M. P., Singh, H. C., Pozniak, C. J. & Mascher, M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence blockembly of plant genomes. Plant Methods 18, 128 (2022).
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).
Monat, C. et al. TRITEX: chromosome-scale sequence blockembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).
Šimková, H., Tulpová, Z. & Cápal, P. in Plant Cytogenetics and Cytogenomics: Methods and Protocols (eds Heitkam, T. & Garcia, S.) 465–483 (Springer, 2023).
Kron, P. & Husband, B. C. Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann. Bot. 110, 1067–1078 (2012).
Galbraith, D. W. et al. Rapid flow cytometric blockysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).
Taylor, J. & Butler, D. R package ASMap: efficient genetic linkage map construction and diagnosis. J. Stat. Softw. 79, 1–29 (2017).
Hickey, G. et al. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 42, 663–673 (2023).
Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018).
Sirén, J. et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science 374, abg8871 (2021).
Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 21, 35 (2020).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 1, 7 (2018).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).
Nurk, S. et al. HiCanu: accurate blockembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Tillich, M. et al. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11 (2017).
Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Aliyeva-Schnorr, L. et al. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J. 84, 385–394 (2015).
Steckenborn, S. et al. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum ***e L.). Plant Reprod. 36, 1–15 (2023).
Bushnell, B., Rood, J. & Singer, E. BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).
Campell, B. R., Song, Y., Posch, T. E., Cullis, C. A. & Town, C. D. Gene 112, 225–228 (1992).
Gerlach, W. L. & Bedbrook, J. R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885 (1979).
Belostotsky, D. A. & Ananiev, E. V. Characterization of relic DNA from barley genome. Theor. Appl. Genet. 80, 374–380 (1990).
Kubalova, I. et al. Helical coiling of metaphase chromatids. Nucleic Acids Res. 51, 2641–2654 (2023).
Li, H. Aligning sequence reads, clone sequences and blockembly contigs with BWA-MEM. Preprint at (2013).
Zheng, X. et al. SeqArray—a storage-efficient high-performance data format for WGS variant calls. Bioinformatics 33, 2251–2257 (2017).
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component blockysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
Purcell, S. et al. PLINK: a tool set for whole-genome blockociation and population-based linkage blockyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Wick, R. R. Badread: simulation of error-prone long reads. J. Open Source Softw. 4, 1316 (2019).
Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).
Lin, M. F. et al. GLnexus: joint variant calling for large cohort sequencing. Preprint at bioRxiv (2018).
Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome blockemblies. Genome Biol. 20, 277 (2019).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the blockysis of mblockive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
Guarracino, A., Heumos, S., Nahnsen, S., Prins, P. & Garrison, E. ODGI: understanding pangenome graphs. Bioinformatics 38, 3319–3326 (2022).
Garrison, E. et al. Building pangenome graphs. Nat. Methods 21, 2008–2012 (2024).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).
Wicker, T., Matthews, D. E. & Keller, B. TREP: a database for Triticeae repetitive elements. Trends Plant Sci. 7, 561–562 (2002).
Zhang, R.-G. et al. TEsorter: an accurate and fast method to clblockify LTR-retrotransposons in plant genomes. Hortic. Res. 9, uhac017 (2022).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Fuerst, D., Shermeister, B., Mandel, T. & Hübner, S. Evolutionary conservation and transcriptome blockyses attribute perenniality and flowering to day-length responsive genes in bulbous barley (Hordeum bulbosum). Genome Biol. Evol. 15, evac168 (2023).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Kovaka, S. et al. Transcriptome blockembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).
Li, H. Protein-to-genome alignment with miniprot. Bioinformatics 39, btad014 (2023).
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging multiple transcriptome blockembly methods for improved gene structure annotation. GigaScience 7, giy093 (2018).
Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. Current Protoc. Bioinform. 65, e57 (2019).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment blockemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Kent, W. J. BLAT-the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grblockes and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA 93, 10274–10279 (1996).
Alonge, M. et al. Automated blockembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258 (2022).
Steuernagel, B. et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor Repertoire1. Plant Physiol. 183, 468–482 (2020).
Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).
Scholz, M. et al. Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor. Appl. Genet. 119, 837–849 (2009).
Harris, R. S. Improved Pairwise Alignment of Genomic DNA. PhD thesis (Pennsylvania State Univ., 2007).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).
Edgar, R. C. Muscle5: high-accuracy alignment ensembles enable unbiased blockessments of sequence homology and phylogeny. Nat. Commun. 13, 6968 (2022).
Ahmed, H. I. et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 620, 830–838 (2023).
Yao, E. et al. GrainGenes: a data-rich repository for small grains genetics and genomics. Database 2022, baac034 (2022).
He, W. et al. NGenomeSyn: an easy-to-use and flexible tool for publication-ready visualization of syntenic relationships across multiple genomes. Bioinformatics 39, btad121 (2023).
Saintenac, C. et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341, 783–786 (2013).
Arend, D. et al. PGP repository: a plant phenomics and genomics data publication infrastructure. Database 2016, baw033 (2016).