Close

A haplotype-resolved pangenome of the barley wild relative Hordeum bulbosum

  • Bohra, A. et al. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40, 412–431 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Haas, M. & Mascher, M. Use of the secondary gene pool of barley in breeding improved varieties. Burleigh Dodds Chapters Online (2019).

  • Frankel, O. H. Genetic conservation: our evolutionary responsibility. Genetics 78, 53–65 (1974).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhu, G. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hardigan, M. A. et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc. Natl Acad. Sci. USA 114, E9999–E10008 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Martin, G. et al. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. Plant J. 102, 1008–1025 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Harlan, J. R. & de Wet, J. M. J. Toward a rational clblockification of cultivated plants. Taxon 20, 509–517 (1971).

    Article 

    Google Scholar
     

  • Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Przewieslik-Allen, A. M. et al. The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nat. Plants 7, 172–183 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brblockac, J. & Blattner, F. R. Species-level phylogeny and polyploid relationships in Hordeum (Poaceae) inferred by next-generation sequencing and in silico cloning of multiple nuclear loci. Syst. Biol. 64, 792–808 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Jörgensen, R. B. Biosystematics of Hordeum bulbosum L. Nord. J. Bot. 2, 421–434 (1982).

    Article 

    Google Scholar
     

  • Blattner, F. R. et al. An area-resolved phylogeography of bulbous barley (Hordeum bulbosum; Poaceae). Preprint at bioRxiv (2025).

  • Johnston, P. A., Timmerman-Vaughan, G. M., Farnden, K. J. F. & Pickering, R. Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor. Appl. Genet. 118, 1429–1437 (2009).

    Article 

    Google Scholar
     

  • Walther, U., Rapke, H., Proeseler, G. & Szigat, G. Hordeum bulbosum-a new source of disease resistance-transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breed. 119, 215–218 (2000).

    Article 

    Google Scholar
     

  • Wendler, N. et al. Bulbosum to go: a toolbox to utilize Hordeum ***e/bulbosum introgressions for breeding and beyond. Mol. Plant 8, 1507–1519 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hoseinzadeh, P., Ruge-Wehling, B., Schweizer, P., Stein, N. & Pidon, H. High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front. Plant Sci. 11, 225 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Pidon, H. et al. High-resolution mapping of Rym14Hb, a wild relative resistance gene to barley yellow mosaic disease. Theor. Appl. Genet. 134, 823–833 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jayakodi, M., Schreiber, M., Stein, N. & Mascher, M. Building pan-genome infrastructures for crop plants and their use in blockociation genetics. DNA Res. 28, dsaa030 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Jayakodi, M. et al. Structural variation in the pangenome of wild and domesticated barley. Nature 636, 654–662 (2024).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and blockembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Padmarasu, S., Himmelbach, A., Mascher, M. & Stein, N. In situ Hi-C for plants: an improved method to detect long-range chromatin interactions. Methods Mol. Biol. 1933, 441–472 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dreissig, S., Fuchs, J., Himmelbach, A., Mascher, M. & Houben, A. Sequencing of single pollen nuclei reveals meiotic recombination events at megabase resolution and cir***vents segregation distortion caused by postmeiotic processes. Front. Plant Sci. 8, 1620 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Braz, G. T. et al. Comparative Oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208, 513–523 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Igolkina, A. A. et al. Towards an unbiased characterization of genetic polymorphism. Preprint at bioRxiv (2024).

  • Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vicient, C. M. et al. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 1769–1784 (1999).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat. Commun. 13, 3891 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Mather, N., Traves, S. M. & Ho, S. Y. W. A practical introduction to sequentially Markovian coalescent methods for estimating demographic history from genomic data. Ecol. Evol. 10, 579–589 (2020).

    Article 

    Google Scholar
     

  • Gblocke, F., Téhet, R., Durand, A., Gibert, E. & Fontes, J.-C. The arid–humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346, 141–146 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Mascher, M. et al. Long-read sequence blockembly: a technical evaluation in barley. Plant Cell 33, 1888–1906 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Büschges, R. et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695–705 (1997).

    Article 

    Google Scholar
     

  • Nancarrow, N., Aftab, M., Hollaway, G., Rodoni, B. & Trębicki, P. Yield losses caused by barley yellow dwarf virus-PAV infection in wheat and barley: a three-year field study in South-Eastern Australia. Microorganisms 9, 645 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Pidon, H. et al. High-resolution mapping of Ryd4Hb, a major resistance gene to Barley yellow dwarf virus from Hordeum bulbosum. Theor. Appl. Genet. 137, 60 (2024).

  • Jost, M., Singh, D., Lagudah, E., Park, R. F. & Dracatos, P. Fine mapping of leaf rust resistance gene Rph13 from wild barley. Theor. Appl. Genet. 133, 1887–1895 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Michelmore, R. W. & Meyers, B. C. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 1113–1130 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Khan, A. W. et al. Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25, 148–158 (2019).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527–534 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Sun, H. et al. Chromosome-scale and haplotype-resolved genome blockembly of a tetraploid potato cultivar. Nat. Genet. 54, 342–348 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Jakob, S. S., Meister, A. & Blattner, F. R. The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol. Biol. Evol. 21, 860–869 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Dvorak, J., McGuire, P. E. & Cblockidy, B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30, 680–689 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Himmelbach, A., Walde, I., Mascher, M. & Stein, N. Tethered chromosome conformation capture sequencing in Triticeae: a valuable tool for genome blockembly. Bio-protocol 8, e2955 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Himmelbach, A. et al. Discovery of multi‐megabase polymorphic inversions by chromosome conformation capture sequencing in large‐genome plant species. Plant J. 96, 1309–1316 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wendler, N. et al. Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol. J. 12, 1122–1131 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo blockembly using phased blockembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Marone, M. P., Singh, H. C., Pozniak, C. J. & Mascher, M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence blockembly of plant genomes. Plant Methods 18, 128 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Monat, C. et al. TRITEX: chromosome-scale sequence blockembly of Triticeae genomes with open-source tools. Genome Biol. 20, 284 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Šimková, H., Tulpová, Z. & Cápal, P. in Plant Cytogenetics and Cytogenomics: Methods and Protocols (eds Heitkam, T. & Garcia, S.) 465–483 (Springer, 2023).

  • Kron, P. & Husband, B. C. Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann. Bot. 110, 1067–1078 (2012).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Galbraith, D. W. et al. Rapid flow cytometric blockysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, J. & Butler, D. R package ASMap: efficient genetic linkage map construction and diagnosis. J. Stat. Softw. 79, 1–29 (2017).

    Article 

    Google Scholar
     

  • Hickey, G. et al. Pangenome graph construction from genome alignments with Minigraph-Cactus. Nat. Biotechnol. 42, 663–673 (2023).

    Article 
    PubMed Central 

    Google Scholar
     

  • Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Sirén, J. et al. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science 374, abg8871 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 21, 35 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 1, 7 (2018).


    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Nurk, S. et al. HiCanu: accurate blockembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tillich, M. et al. GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Aliyeva-Schnorr, L. et al. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J. 84, 385–394 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Steckenborn, S. et al. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum ***e L.). Plant Reprod. 36, 1–15 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bushnell, B., Rood, J. & Singer, E. BBMerge – accurate paired shotgun read merging via overlap. PLoS One 12, e0185056 (2017).

  • Campell, B. R., Song, Y., Posch, T. E., Cullis, C. A. & Town, C. D. Gene 112, 225–228 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Gerlach, W. L. & Bedbrook, J. R. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 7, 1869–1885 (1979).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Belostotsky, D. A. & Ananiev, E. V. Characterization of relic DNA from barley genome. Theor. Appl. Genet. 80, 374–380 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Kubalova, I. et al. Helical coiling of metaphase chromatids. Nucleic Acids Res. 51, 2641–2654 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, H. Aligning sequence reads, clone sequences and blockembly contigs with BWA-MEM. Preprint at (2013).

  • Zheng, X. et al. SeqArray—a storage-efficient high-performance data format for WGS variant calls. Bioinformatics 33, 2251–2257 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zheng, X. et al. A high-performance computing toolset for relatedness and principal component blockysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome blockociation and population-based linkage blockyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R. Badread: simulation of error-prone long reads. J. Open Source Softw. 4, 1316 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lin, M. F. et al. GLnexus: joint variant calling for large cohort sequencing. Preprint at bioRxiv (2018).

  • Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome blockemblies. Genome Biol. 20, 277 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the blockysis of mblockive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Guarracino, A., Heumos, S., Nahnsen, S., Prins, P. & Garrison, E. ODGI: understanding pangenome graphs. Bioinformatics 38, 3319–3326 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Garrison, E. et al. Building pangenome graphs. Nat. Methods 21, 2008–2012 (2024).

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article 

    Google Scholar
     

  • Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wicker, T., Matthews, D. E. & Keller, B. TREP: a database for Triticeae repetitive elements. Trends Plant Sci. 7, 561–562 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R.-G. et al. TEsorter: an accurate and fast method to clblockify LTR-retrotransposons in plant genomes. Hortic. Res. 9, uhac017 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fuerst, D., Shermeister, B., Mandel, T. & Hübner, S. Evolutionary conservation and transcriptome blockyses attribute perenniality and flowering to day-length responsive genes in bulbous barley (Hordeum bulbosum). Genome Biol. Evol. 15, evac168 (2023).

    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kovaka, S. et al. Transcriptome blockembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, H. Protein-to-genome alignment with miniprot. Bioinformatics 39, btad014 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging multiple transcriptome blockembly methods for improved gene structure annotation. GigaScience 7, giy093 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. Current Protoc. Bioinform. 65, e57 (2019).

    Article 

    Google Scholar
     

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    Article 
    PubMed Central 

    Google Scholar
     

  • Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment blockemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kent, W. J. BLAT-the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grblockes and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA 93, 10274–10279 (1996).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Alonge, M. et al. Automated blockembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Steuernagel, B. et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor Repertoire1. Plant Physiol. 183, 468–482 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Scholz, M. et al. Ryd4Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor. Appl. Genet. 119, 837–849 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Harris, R. S. Improved Pairwise Alignment of Genomic DNA. PhD thesis (Pennsylvania State Univ., 2007).

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).

  • Edgar, R. C. Muscle5: high-accuracy alignment ensembles enable unbiased blockessments of sequence homology and phylogeny. Nat. Commun. 13, 6968 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ahmed, H. I. et al. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 620, 830–838 (2023).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Yao, E. et al. GrainGenes: a data-rich repository for small grains genetics and genomics. Database 2022, baac034 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • He, W. et al. NGenomeSyn: an easy-to-use and flexible tool for publication-ready visualization of syntenic relationships across multiple genomes. Bioinformatics 39, btad121 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Saintenac, C. et al. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341, 783–786 (2013).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Arend, D. et al. PGP repository: a plant phenomics and genomics data publication infrastructure. Database 2016, baw033 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Source link

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *